• Title/Summary/Keyword: CFRP

Search Result 1,256, Processing Time 0.026 seconds

Axial Collapse Characteristics of Aluminum CFRP Compound Square Members for Vehicle Structural Members (차체구조부재용 알루미늄 CFRP 혼성사각부재의 축 압궤 특성)

  • Lee, Kil-Sung;Cha, Cheon-Seok;Pyeon, Seok-Beom;Yang, In-Young;Sim, Jae-Ki
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.10 s.241
    • /
    • pp.1329-1335
    • /
    • 2005
  • An aluminum or CFRP (Carbon Fiber ReinfDrced Plastics)is representative one of light-weight materials but its axial collapse mechanism is different from each other. The aluminum member absorbs energy by stable plastic deformation, while the CFRP member absorbs energy by unstable brittle failure with higher specific strength and stiffness than those in the aluminum member. In an attempt to achieve a synergy effect by combining the two members, aluminum CFRP compound square members were manufactured, which are composed of aluminum members wrapped with CFRP outside aluminum square members with different fiber orientation angle and thickness of CFRP, and axial collapse tests were performed fur the members. The axial collapse characteristics of the compound members were analyzed and compared with those of the respective aluminum members and CFRP members. Test results showed that the collapse of the aluminum CFRP compound member complemented unstable brittle failure of the CFRP member due to ductile characteristics of the inner aluminum member. The collapse modes were categorized into four modes under the iuluence of the fiber orientation angle and thickness of CFRP. The absorbed energy Per unit mass, which is in the light-weight aspect was higher in the aluminum CFRP compound member than that in the aluminum member and the CFRP member alone.

Anchorage efficiency of mold-type anchorage for CFRP plates (CFRP판 긴장재를 위한 부착형 정착장치의 정착성능)

  • Park, Jong-Sup;Park, Young-Hwan;Jung, Woo-Tai
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.169-172
    • /
    • 2008
  • Carbon fiber reinforced polymer (CFRP) laminates can be used more efficiently in strengthening applications by applying prestress to the CFRP laminates. A key problem for prestressing with CFRP laminates is anchoring the laminates. These may include fracture to the CFRP laminates due to excessive gripping force or slippage of the CFRP laminates out of the anchorage zone caused by low friction between the anchor device and the lamiantes. The main objective of this study is the development of an applicative mold-type anchorage system for prestressed CFRP laminates through experimental study. The experimental parameters were the type of anchorage detail and the effect of surface treatment. The test results showed that the developed anchor assures 100% CFRP laminate strength.

  • PDF

A Study on the Collapse Modes and Energy Absorption Characteristics of AI/CFRP Compound Tubes Under Axial Compression (축 하중을 받는 Al/CFRP 혼성튜브의 압궤모드와 에너지흡수 특성에 관한 연구)

  • Cha, Cheon-Seok;Lee, Kil-Sung;Chung, Jin-Oh;Yang, In-Young
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.11
    • /
    • pp.1768-1775
    • /
    • 2004
  • The compressive axial collapse tests were performed to investigate collapse modes and energy absorption characteristics of Al/CFRP compound tubes which are aluminum tubes wrapped with CFRP(Carbon Fiber Reinforced Plastics) outside the aluminum circular and square tubes. Based on collapse characteristics of aluminum tubes and CFRP tubes respectively, the axial collapse tests were performed for Al/CFRP compound tubes which have different CFRP orientation angles. Test results showed that Al/CFRP compound tubes supplemented the unstable brittle failure of CFRP tubes due to ductile nature of inner aluminum tubes. In the light-weight aspect, specific energy absorption were the highest for Al/CFRP, CFRP in the middle, and aluminum the lowest. Also, specific energy absorption of circular tubes was higher than square tubes'. It turned out that CFRP orientation angle of Al/CFRP compound tubes influence specific energy absorption together with the collapse modes of the tubes.

A Study on the Collapse Characteristics of Al/CFRP Square Structural Member for Light Weight (경량화용 Al/CFRP 사각 구조부재의 압궤 특성에 관한 연구)

  • Hwang, Woo-Chae;Sim, Jae-Ki;Yang, In-Young
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.20 no.3
    • /
    • pp.219-224
    • /
    • 2011
  • Aluminum or CFRP is representative one of the lightweight materials. Collapse behavior of Al/CFRP square structural member was evaluated in this study based on the respective collapse behavior of aluminum and CFRP member. Al/CFRP square structural members were manufactured by wrapping CFRP prepreg sheets outside the aluminum hollow members in the autoclave. Because the CFRP is an anisotropic material with mechanical properties, The Al/CFRP square structural members stacked at different angles(${\pm}15^{\circ}$, ${\pm}45^{\circ}$, ${\pm}90^{\circ}$, $90^{\circ}/0^{\circ}$ and $0^{\circ}/90^{\circ}$ where the direction on $0^{\circ}$ coincides with the axis of the member) and interface numbers(2, 3, 4, 6 and 7). The axial impact collapse tests were carried out for each section members. Collapse mode and energy absorption characteristics of the each member were analyzed.

Nonlinear Analysis of Concrete Girders Strengthened with Unboded Prestressed CFRP Plates (비부착 프리스트레스트 CFRP 판으로 보강된 콘크리트 거더의 비선형 해석)

  • Choi, Kyu-Chon;Lee, Jae Seok
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.6A
    • /
    • pp.495-502
    • /
    • 2010
  • A study for the nonlinear analysis method of flexural behavior of concrete girders strengthened with unbonded prestressed CFRP plates is presented. The concrete girders strengthened with unbonded prestressed CFRP plates exhibit more complex nonlinear behavior due to the slip between the concrete girder and the CFRP plates than the case of bonded CFRP plates. The unbonded CFRP plate is modeled as an assemblage of the curved elements both ends of which are rigidly linked to the nodes of fibered frame elements. The slip effect of the unbonded CFRP plate is taken into account using the force equilibrium relationship at each node. To evaluate the validity and the capability of the proposed analysis method, the ultimate analysis results of the concrete beams strengthened with unbonded prestressed CFRP plate are compared with the experimental results obtained from other investigators. The proposed analysis method is found to predict ultimate behaviors of these beams fairly well. Additionally the time-dependent deformations of the concrete beam seems to have little influence on the ultimate behaviors of concrete beams strengthened with unbonded prestressed CFRP plate, and the cracks of the concrete beam which occurred before strengthening it with CFRP plate are found to have almost no influence on the ultimate capacity of the beam.

Ductility of carbon fiber-reinforced polymer (CFRP) strengthened reinforced concrete beams: Experimental investigation

  • Kim, Sang Hun;Aboutaha, Riyad S.
    • Steel and Composite Structures
    • /
    • v.4 no.5
    • /
    • pp.333-353
    • /
    • 2004
  • Strength of reinforced concrete beams can easily be increased by the use of externally bonded CFRP composites. However, the mode of failure of CFRP strengthened beam is usually brittle due to tension-shear failure in the concrete substrate or bond failure near the CFRP-Concrete interface. In order to improve the ductility of CFRP strengthened concrete beams, critical variables need to be investigated. This experimental and analytical research focused on a series of reinforced concrete beams strengthened with CFRP composites to enhance the flexural capacity and ductility. The main variables were the amount of CFRP composites, the amount of longitudinal and shear reinforcement, and the effect of CFRP end diagonal anchorage system. Sixteen full-scale beams were investigated. A new design guideline was proposed according to the effects of the above-mentioned variables. The experimental and analytical results were found to be in good agreement.

Axial Collapse Characteristics of Combined Aluminum CFRP Square Tubes for Light-Weight (경량화용 혼성 알루미늄 CFRP 사각튜브의 축 압궤특성)

  • 이길성;차천석;정진오;양인영
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.110-113
    • /
    • 2004
  • Aluminum and CFRP tube is light-weight material representatively but collapse mechanism is different under axial loading. Aluminum tube absorbs energy by stable plastic deformation under axialloading. While CFRP(Carbon Fiber Reinforced Plastics)tube absorb synergy by unstable brittle failure but its specific strength and stiffness is higher than that of aluminum tube. In this study, for complement of detect and synergy effect by combination with the advantages of each member, the axialcollapsetests were performed for combined aluminum CFRP tubes which are composed of aluminum tubes wrapped with CFRP out side aluminum square tubes. Collapsecharacteristics were analyzed for combined square tubes which have different CFRP orientation angle and thickness. Test results were compared with that of aluminum tubes and CFRP tubes.

  • PDF

An Experimental Study on Flexural Adhesive Performance of RC Beams Strengthened by Carbon Fiber Sheets (탄소섬유쉬트로 보강된 RC보의 휨 부착성능에 관한 실험적 연구)

  • 최기선;류화성;최근도;이한승;유영찬;김긍환
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.11a
    • /
    • pp.997-1002
    • /
    • 2001
  • Tensile strength of CFRP (Carbon Fiber Reinforced Polymer) is approximately 10 times higher than that steel reinforcement, but the design strength of CFRP is normally reduced by the bond failure between RC and CFRP. Many researches have been carried out, concerned with bond behavior between RC and CFRP to prevent the unpredicted bond failure of RC beam strengthened by CFRP, but the national design code for design bond strength of CFRP hasn't been constructed. In this study, 3 beams specimen strengthened by CFRP under the variable of bonded length were tested to derive the design bond strength of CFRP to the RC flexural members. Also 2 beams specimen strengthened by CFRP were tested to inspect the construction environment effects such as mixing error of epoxy resin and the amount of primer epoxy resin. From the test results, It is concluded that the maximum design bond strength of CFRP to RC flexural member is considered to be $\tau_{a}$=8kgf/$cm^{2}$.

  • PDF

Tests of concrete slabs reinforced with CFRP prestressed prisms

  • Liang, Jiongfeng;Yu, Deng;Yang, Zeping;Chai, Xinjun
    • Computers and Concrete
    • /
    • v.18 no.3
    • /
    • pp.355-366
    • /
    • 2016
  • This paper reports the testing of concrete slabs reinforced with CFRP prestressed concrete prisms(PCP) on the flexural behavior. Four concrete slabs were tested, a reference slab reinforced with steel bars, and three slabs reinforced with CFRP prestressed concrete prisms (PCP). All slabs were made with dimensions of 600mm in width, 2200mm in length and 150 in depth. All concrete slabs reinforced with CFRP prestressed concrete prisms(PCP) exhibited CFRP bar rupture failure mode. It was shown that the application of the CFRP prestressed prisms can limit service load deflections and crack width, the increased level of prestress in the CFRP prestressed prism positively affected the maximum crack width. The deflection of concrete slabs reinforced with CFRP prestressed prisms decreased as prestress in the CFRP prestressed prism increased.

Numerical investigation of continuous hollow steel beam strengthened using CFRP

  • Keykha, Amir Hamzeh
    • Structural Engineering and Mechanics
    • /
    • v.66 no.4
    • /
    • pp.439-444
    • /
    • 2018
  • This paper presents a numerical study on the behavior of continuous hollow steel beam strengthened using carbon fiber reinforced polymers (CFRP). Most previous studies on the CFRP strengthening of steel beams have been carried out on the steel beams with simple boundary conditions. No independent study, to the researcher's knowledge, has studied on the CFRP strengthening of square hollow section (SHS) continuous steel beam. However, this study explored the effect of the use of adhesively bonded CFRP flexible sheets on the behavior of the continuous SHS steel beams. Finite Element Method (FEM) has been employed for modeling. Eleven specimens, ten of which were strengthened using CFRP sheets, were analyzed under different coverage length, the number of layers, and the location of CFRP composite. ANSYS software was used to analyze the SHS steel beams. The results showed that the coverage length, the number of layers, and the location of CFRP composite are effective in increasing the ultimate load capacity of the continuous SHS steel beams. Application of CFRP composite also caused the ductility increase some strengthened specimens.