• Title/Summary/Keyword: CFT Stub Column

Search Result 15, Processing Time 0.024 seconds

An Experimental Study on the Evaluation of Mechanical Properties of CFT Column by Unstressed Test and Stub Specimen (비재하 가열시험 및 Stub 시험체를 활용한 CFT기둥의 역학적 특성평가에 관한 실험적 연구)

  • Lee, Dae-Hee;Lee, Tae-Gyu;Lee, Eui-Bae;Kim, Young-Sun;Kim, Gyu-Yong;Kim, Moo-Han
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2008.05a
    • /
    • pp.209-213
    • /
    • 2008
  • Recently, it increases in use of CFT(Concrete filled steel tube, below CFT) because material and method are required to be diversification and High-Performance according to increase the super-high structure. But, CFT column lose bearing capacity under fire because steel tube is exposed to outside. As a result, structure is collapsed and then it cause much damage. In case of the Europe, Japan and America, they have studied the fire-resistance performance of CFT under fire for a long time. However, it would have hardly studied it in domestic because it is much difficulty about experiment machine and cost. So it is needed base on fire-resist performance of CFT under fire. Therefore, this study dynamic specificity of stub column which made tester of stub column based on facts of strength and mixing fiber evaluated used heating and load testing machine. As a result, it is willing to propose fundamental data for quick and accurate diagnosis of deteriorated concrete structure by fire damage with experiment according to the design high strength concrete.

  • PDF

Behavior of polygonal concrete-filled steel tubular stub columns under axial loading

  • Zhang, Tao;Ding, Fa-xing;Wang, Liping;Liu, Xue-mei;Jiang, Guo-shuai
    • Steel and Composite Structures
    • /
    • v.28 no.5
    • /
    • pp.573-588
    • /
    • 2018
  • The objective of this paper is to investigate the mechanical performances of polygonal concrete-filled circular steel tubular (CFT) stub columns under axial loading through combined experimental and numerical study. A total of 32 specimens were designed to investigate the effect of the concrete strength and steel ratio on the compressive behavior of polygonal CFT stub columns. The ultimate bearing capacity, ductility and confinement effect were analyzed based on the experimental results and the failure modes were discussed in detail. Besides, ABAQUS was adopted to establish the three dimensional FE model. The composite action between the core concrete and steel tube was further discussed and clarified. It was found that the behavior of CFT stub column changes with the change of the cross-section, and the change is continuous. Finally, based on both experimental and numerical results, a unified formula was developed to estimate the ultimate bearing capacity of polygonal CFT stub columns according to the superposition principle with rational simplification. The predicted results showed satisfactory agreement with both experimental and FE results.

Modelling of Load-Strain Curves for CFT Stub Columns (각형 CFT 단주의 하중-변형도 관계 모델)

  • Kang, Hyun Sik;Yoo, Yeong Chan;Moon, Tae Sup
    • Journal of Korean Society of Steel Construction
    • /
    • v.12 no.1 s.44
    • /
    • pp.9-16
    • /
    • 2000
  • The model of load-strain relations for CFT stub columns subjected to centrally compressive axial load is shown in this paper. The modified model of concrete and steel is obtained by using the experimental data and the formulas of that is based on the foreign researcher's result. The purpose of this paper is to suggest the basic data for evaluating the behavior of CFT stub columns to be variable to the strength of concrete and steel.

  • PDF

Reliability-based assessment of American and European specifications for square CFT stub columns

  • Lu, Zhao-Hui;Zhao, Yan-Gang;Yu, Zhi-Wu;Chen, Cheng
    • Steel and Composite Structures
    • /
    • v.19 no.4
    • /
    • pp.811-827
    • /
    • 2015
  • This paper presents a probabilistic investigation of American and European specifications (i.e., AISC and Eurocode 4) for square concrete-filled steel tubular (CFT) stub columns. The study is based on experimental results of 100 axially loaded square CFT stub columns from the literature. By comparing experimental results for ultimate loads with code-predicted column resistances, the uncertainty of resistance models is analyzed and it is found that the modeling uncertainty parameter can be described using random variables of lognormal distribution. Reliability analyses were then performed with/without considering the modeling uncertainty parameter and the safety level of the specifications is evaluated in terms of sufficient and uniform reliability criteria. Results show that: (1) The AISC design code provided slightly conservative results of square CFT stub columns with reliability indices larger than 3.25 and the uniformness of reliability indices is no better because of the quality of the resistance model; (2) The uniformness of reliability indices for the Eurocode 4 was better than that of AISC, but the reliability indices of columns designed following the Eurocode 4 were found to be quite below the target reliability level of Eurocode 4.

An Experimental Study on Structural Performance of Welded Built-up Square CFT Stub Columns (용접조립 각형 CFT 단주의 구조특성에 관한 실험적 연구)

  • Lee, Seong Hui;Choi, Young Hwan;Yom, Kyong Soo;Kim, Jin Ho;Choi, Sung Mo
    • Journal of Korean Society of Steel Construction
    • /
    • v.20 no.5
    • /
    • pp.645-653
    • /
    • 2008
  • Welded built-up square tubes are manufactured by flare welding at the center of the column width for cold-formed L-shaped four-piece plates and improved composite effect of concrete and steel by vertical inner anchor. Also, the axial resistance of concrete is increased by the thinness of the steel column, and the composite effect of concrete and steel prevents the steel column from local buckling. In this study, we introduced a manufacturing method of built-up square column steel square concrete-filled tubular column with vertical inner anchor and superior structural performance of the square stub column verified by the structural test for 15 specimens with parameters of shape of tube (built-up square tube, general steel tube), width over thickness of the steel tube (B/t=50, 58, 67) and the strength of concrete (f'c=10MPa, 50MPa).

Hysteresis Behavior of Partially Restrained Smart Connections for the Seismic Performance of Composite Frame (CFT 합성골조의 내진성능을 위한 스마트 반강접합의 이력거동)

  • Kim, Joo Woo
    • Journal of Korean Society of Steel Construction
    • /
    • v.27 no.1
    • /
    • pp.99-108
    • /
    • 2015
  • The partially restrained smart CFT (concrete filled tube) column-to-beam connections with top-seat split T connections show various behavior characteristics according to the changes in the diameter and tightening force of the fastener, the geometric shape of T-stub, and material properties. This paper presents results from a systematic three-dimensional nonlinear finite element study on the structural behavior of the top-seat split T connections subjected to cyclic loadings. This connection includes super-elastic shape memory alloy (SMA) T-stub and rods to obtain the re-centering capabilities as well as great energy dissipation properties of the CFT composite frame. A wide scope of additional structural behaviors explain the influences of the top-seat split T connections parameters, such as the different thickness and gage distances of split T-stub.

A Study on the Prediction of Residual Strength of Concrete Filled Steel Tube Column without Fire Protective Coating by Unstressed Heating (비재하 가열에 의한 무내화피복 CFT 기둥의 잔존내력 예측에 관한 연구)

  • Kim, Gyu-Yong;Lee, Hyoung-Jun;Lee, Tae-Gyu;Kim, Young-Sun;Kang, Sun-Jong
    • Fire Science and Engineering
    • /
    • v.23 no.3
    • /
    • pp.31-39
    • /
    • 2009
  • Recently, fire resistance in high-rise building is becoming major problem socially. So it is need of hour to study on fire resistance in buildings. This study estimates fire resistance performance to utilized CFT (Concrete filled steel tube, below CFT) column in the high structure. But it is difficult quantitative evaluation about fire resistant performance of CFT. Therefore, this study made CFT specimen that determine the factor which is strength of concrete and then CFT column was exposed to heating controlled as closely as possible the ISO-834 standard fire curve. Also, tried to analyze internal temperature through nonlinear transient heat flow analysis. And, presumed extant compressive strength on the basis of this.

The 3D-numerical simulation on failure process of concrete-filled tubular (CFT) stub columns under uniaxial compression

  • Zhu, W.C.;Ling, L.;Tang, C.A.;Kang, Y.M.;Xie, L.M.
    • Computers and Concrete
    • /
    • v.9 no.4
    • /
    • pp.257-273
    • /
    • 2012
  • Based on the heterogeneous characterization of concrete at mesoscopic level, Realistic Failure Process Analysis ($RFPA^{3D}$) code is used to simulate the failure process of concrete-filled tubular (CFT) stub columns. The results obtained from the numerical simulations are firstly verified against the existing experimental results. An extensive parametric study is conducted to investigate the effects of different concrete strength on the behaviour and load-bearing capacity of the CFT stub columns. The strength of concrete considered in this study ranges from 30 to 110 MPa. Both the load-bearing capacity and load-displacement curves of CFT columns are evaluated. In particular, the crack propagation during the deformation and failure processes of the columns is predicted and the associated mechanisms related to the increased load-bearing capacity of the columns are clarified. The numerical results indicate that there are two mechanisms controlling the failure of the CFT columns. For the CFT columns with the lower concrete strength, they damage when the steel tube yields at first. By contrast, for the columns with high concrete strength it is the damage of concrete that controls the overall loading capacity of the CFT columns. The simulation results also demonstrate that $RFPA^{3D}$ is not only a useful and effective tool to simulate the concrete-filled steel tubular columns, but also a valuable reference for the practice of engineering design.

Strength Evaluation of Rectangular CFT Stub Columns varing with Concrete Strength and Width-to-Thickness Ratio of Steel Tubes (콘크리트 강도 및 강관 폭두께비에 따른 각형 CFT 단주의 내력평가)

  • Shim, Jong-Seok;Han, Duck-Jeon
    • Journal of The Korean Digital Architecture Interior Association
    • /
    • v.11 no.2
    • /
    • pp.31-39
    • /
    • 2011
  • Concrete-filled steel tube(CFT) columns have become popular for building construction due to not only composite effect of steel tube and infilled concrete, but also more economical. The purpose of this paper is to propose the applicable boundary formula of width-to-thickness ratio for rectangular steel tube as using CFT column. A parametric study was performed taking width-to-thickness ratio of rectangular steel tube and compressive strength of concrete as the main parameter. The strength of concrete are selected to 30, 60, 90MPa. The non-linear analysis was adopted in order to take into account the effect of concrete strength. Finally, from the test and analysis results, the effect of increasing strength according to concrete strength and width-to-thickness of steel tube and plastic behavior of specimens were verified distinctly.

Experimental study on axial compressive behavior of welded built-up CFT stub columns made by cold-formed sections with different welding lines

  • Naghipour, Morteza;Yousofizinsaz, Ghazaleh;Shariati, Mahdi
    • Steel and Composite Structures
    • /
    • v.34 no.3
    • /
    • pp.347-359
    • /
    • 2020
  • The objective of this study is to experimentally scrutinize the axial performance of built-up concrete filled steel tube (CFT) columns composed of steel plates. In this case, the main parameters cross section types, compressive strength of filled concrete, and the effect of welding lines. Welded built-up steel box columns are fabricated by connecting two pieces of cold-formed U-shaped or four pieces of L-shaped thin steel plates with continuous penetration groove welding line located at mid-depth of stub column section. Furthermore, traditional square steel box sections with no welding lines are investigated for the comparison of axial behavior between the generic and build-up cross sections. Accordingly, 20 stub columns with thickness and height of 2 and 300 mm have been manufactured. As a result, welding lines in built-up specimens act as stiffeners because have higher strength and thickness in comparison to the plates. Subsequently, by increasing the welding lines, the load bearing capacity of stub columns has been increased in comparison to the traditional series. Furthermore, for specimens with the same confinement steel tubes and concrete core, increment of B/t ratio has reduced the ductility and axial strength.