• Title/Summary/Keyword: CKD-602

Search Result 18, Processing Time 0.02 seconds

ANTICANCER EFFECT OF CKD-602(BELOTECAN, CAMTOBELL$^{(R)}$) ON THE ORAL CANCER CELL LINES (구강암 세포주에 대한 CKD-602의 항암 효과)

  • Yun, Pil-Young;Ok, Yong-Ju;Myoung, Hoon;Lee, Jong-Ho;Kim, Myung-Jin
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.31 no.1
    • /
    • pp.7-12
    • /
    • 2005
  • Purpose: CKD-602, a newly developed water-soluble campthotecin analogue, is a anticancer agent which act as a DNA topoisomerase I inhibitor. CKD-602 is known as more potent and tolerable agent. The main purposes of this study were to measure the cytotoxic effect of CKD-602 on the oral cancer cell lines and to evaluate the apoptotic aspect of dead cells. Materials and Methods: To determine the cytotoxic effect of CKD-602 on the oral cancer cell lines in comparison with various cell lines, such as lung cancer and colon cancer cell lines, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide(MTT) assay was performed. And apoptosis was analyzed using fluorescence-activated cell sorting(FACS) system. Results: CKD-602 decreased the viability of malignant cells in a dose dependent manner and in a time dependent manner. CKD-602 showed excellent cytotoxicity to the oral cancer cell lines. Also, apoptotic portion was increased in a dose dependent manner. Conclusion: These findings indicated that CKD-602 induced apoptotic cell death in the various cell lines including oral cancer cell lines. From the results, it was suggested that CKD-602 would be a potential therapeutic agent for the oral cancer. More successive researches on the anticancer effect of CKD-602 should be performed.

Genotoxicily Studies of An Anticancer Agent of Camptothecin Series, CKD-602 (Camptothecin계 항암제 CKD-602의 유전독성평가)

  • 하광원;오혜영;허옥순;박장환;손수정;한의식;김종원;강일현;강혁준
    • Environmental Mutagens and Carcinogens
    • /
    • v.18 no.2
    • /
    • pp.129-134
    • /
    • 1998
  • To evaluate the genotoxicity of CKD-602, an anticancer agent the in viかo reverse mutation assay using Salmonella typhimurium, the Chromosome aberration assay using Chinese hamster lung (CHL) cells and the in vivo micronucleus assay using bone marrow cells of ddY mice were performed. In the reverse mutation assay, CKD-602 did not induced mutagenicity in Salmonella typhimurium TA 98, TA 100, TA 1535, and TA 1537 strains with and without metabolic activation. In the chromosome aberration test using CHL cells, there was an increased incidence of structural aberrations induced by CKD-602 without metabolic activation during 24 and 48 hours, but CKD-602 did not induce chromosome aberration with metabolic activation. The in vivo induction of micronuclei was measured in polychromatic erythrocytes of bone marrow of male ddY mice. At 24 hours after treatment with CED-602 by i.p. once, there was an increased incidence of micronucleated polychromatic erythrocytes in bone marrow of ddY male mice.

  • PDF

Pharmacodynamics of CKD-602 (Belotecan) in 3D Cultures of Human Colorectal Carcinoma Cells

  • Lee Sin-Hyung;Al-Abd Ahmed M.;Park Jong-Kook;Cha Jung-Ho;Ahn Soon-Kil;Kim Joon-Kyum;Kuh Hyo-Jeong
    • Biomolecules & Therapeutics
    • /
    • v.14 no.2
    • /
    • pp.90-95
    • /
    • 2006
  • CKD-602 exerts its antitumor effect via inhibition of topoisomerase I in cancer cells. Multicellular spheroid (MCS) and Multicellular layers (MCLs) are known as in vitro 3-dimensional models which closely represent tumor conditions in vivo. In order to investigate the potential of CKD-602 against human colorectal tumors, we evaluated the anti-proliferative activity and penetration ability of CKD-602 in MCS and MCL cultures of DLD-l human colorectal cancer cells, respectively. The maximum effects($E_{max}$) induced by CKD-602 were significantly lower in MCS compared to monolayers (48% vs 92%). With prolonged drug exposure, the $IC_{50's}$ of CKD-602 decreased to $23.5{\pm}1.0nM$ in monolayers after 24 h exposure and $42.3{\pm}1.7nM$ in MCS after 6 days, respectively. However, no further increase in effect was observed for exposure time longer than growth doubling time (Td) in both cultures. Activity of CKD-602 was significantly reduced after penetration through MCL and also with cell-free insert membrane. In conclusion, CKD-602 showed significantly decreased anti-proliferative activity in 3D cultures (MCS) of human colorectal cancer cells. Tumor penetration of CKD-602 could not be determined due to loss of activity after penetration through cell free insert membrane, which warrants further evaluation using a modified model.

Pharmacokinetic Study of CKD-602, A New Camptothecin Derivative: Distribution, Metabolism and Excretion (신규 캄토테신계 항암제 CKD-602의 약물동태: 분포, 대사 및 배설)

  • Lee, Ju-Mong;Lee, Jun-Hee;Kim, Joon-Kyum;Shin, Hee-Jong;Lee, Hyung-Ki;Lee, Sang-Joon;Hong, Chung-Il
    • YAKHAK HOEJI
    • /
    • v.42 no.4
    • /
    • pp.437-446
    • /
    • 1998
  • The distribution, metabolism and excretion of CKD-602{20(S)-7-[2-(N-Isopropylamino)ethyl]camptothecin HCI), a new camptothecin derivative, were investigated in rats after a sing le administration of CKD-602. 1. The tissue levels of CKD-602 given to mice by the intravenous route at a dose of 20mg/kg were the highest in intestine, followed in descending order by kidney, liver, stomach,lung, heart, spleen and plasma. The concentrations of CKD-602 after 24hrs decreased to less than 2% of the peak level in most tissues except the skin. The urinary and fecal excretion of CKD-602 were 47.6% and 44.4% of the administered dose, respectively, with 0.7% remaining in the rinse. 2. After administration of CKD-602 at 10mg/kg in rats, metabolism of this compound was examined in plasma, urine, and feces. The plasma samples were collected for 24hr, urinary and fecal samples for 72hr. While any peak of CKD-602 in HPLC chromatograms was not detected from plasma and urine it was detected in feces (peaks, 9.8 min). However, additional peak area was about 0.5% of the peak area of parent CKD-602. Therefore, CKD-602 may be eliminated with the parent form and rarely metabolized in the body. 4. After I.v. administration of CKD-602 at 10mg/kg in rats, urinary and fecal excretions were examined for 72hrs post dose period. 87% of total urinary excretion of CKD-602 was excreted within 8hr after administration, 53%, and 32% of total fecal excreted amounts were determined in 0-24 hr and 24-48hr periods, respectively. The total excretion amounts of CKD-602 into urine and feces were 94% of the administered dose.

  • PDF

Development of Liposomal Formulation of A Camptothecin Derivative (캄프토테신 유도체의 리포좀 제형 개발)

  • Shim, Jin-Young;Kim, Jin-Seok
    • Journal of Pharmaceutical Investigation
    • /
    • v.31 no.2
    • /
    • pp.113-117
    • /
    • 2001
  • CKD602, a camptothecin derivative, is a synthetic and water-soluble anticancer agent possessing of topoisomerase I inhibiting activity. DPPC and DSPE-PEG liposomal formulations entrapped with CKD602 were developed. DSPE-PEG liposome, or PEGylated liposome, encapsulating CKD602 composed of dipalmitoylphosphatidylcholine (DPPC), cholesterol and distearoyl-N-monoethoxy poly (ethyleneglycol) succinylphosphatidylethanolamine $(DSPE-PEG_{2000})$ (22:11:2) was prepared by reverse-phase evaporation method. Formed liposomes were characterized in terms of the morphology, size and encapsulation efficiency. To elucidate the in vitro stability, PEGylated liposome was incubated in human plasma, and the adsorbed proteins onto the surface of liposomes were applied to the SDS-PAGE. In vitro cytotoxicity of CKD602 encapsulated in PEGylated liposome was studied in human cervical cancer cell line (HeLa). CKD602 in PEGylated liposome was found to be 40-fold more effective $(IC_{50}=1\;nM)$ than free CKD602 $(IC_{50}=40\;nM)$ in inhibiting the growth of HeLa cells in vitro.

  • PDF

Comparison of Single-Dose Toxicity by Intravenous Infusion or Bolus Injection with CKD-602, a Camptothecin Anticancer Agent in Rats (II): Hematological and Serum Biochemical, and Histopathological Changes

  • Kim, Choong-Yong;Yang, Byung-Chul;Kim, Joon-Kyum;Kim, Jong-Choon;Kim, Yong-Beom;Kang, Boo-Hyon;Han, Sang-Seop
    • Toxicological Research
    • /
    • v.20 no.4
    • /
    • pp.381-389
    • /
    • 2004
  • The toxicity of CKD-602 was investigated at doses of 3, 9, and 27 mg/kg in rats, when the same total dose of CKD-602 was administered over 24 hr-continuous infusion or bolus injection. At 3 and 9 mg/kg, the 24-hr infusion group showed a more decreased WBC count on day 3, compared with the bolus group. Administration of CKD-602 caused more toxic effects such as the significant decreases of RBC counts, hematocrit, hemoglobin, and platelet count on day 7 post-administarion in the 24-hr infusion group than in the bolus group. Administration of CKD-602 also caused histopathological changes such as extramedullary hemopoiesis of liver and spleen, hyperplasia of femoral bone marrow, and caecal dilation. These toxic effects were more severe in the 24-hr infusion group than in the bolus injection group, indicating that the toxicity of CKD-602 may be dependant upon the duration of administration.

In Vitro Pharmacodynamics of CKD-602 in HT-29 Cells

  • Park, In-Sook;Ahn, Mee-Ryung;Suh, Soo-Kyung;Choi, Hong-Serck;Sohn, Soo-Jung;Yang, Ji-Sun;Yoo, Tae-Moo;Kuh, Hyo-Jeong
    • Archives of Pharmacal Research
    • /
    • v.25 no.5
    • /
    • pp.718-723
    • /
    • 2002
  • CKD-602 (7-[2-(N-isopropylamino)ethyl]-(20S)-camptothecin) is a recently-developed synthetic camptothecin analogue and currently under clinical development by Chong Kun Dang Pharm (Seoul, Korea). CKD-602 showed potent topoisomerase inhibitory activity in vitro and broad antitumor activity against various human tumor cells in vitro and in vivo in animal models. This study describes the pharmacodynamics of the immediate and delayed cytotoxicity induced by CKD-602 in a human colorectal adenocarcinoma cell line, HT-29, and its intracellular drug accumulation by HPLC. The present study was designed to address whether the higher activity of CKD-602 with prolonged exposure is due to delayed exhibition of cytotoxicity and/or an accumulation of anti proliferative effect on continuous drug exposure. The drug uptake study was performed to determine whether the delayed cytotoxicity is due to a slow drug accumulation in cells. CKD-602 produced a cytotoxicity that was exhibited immediately after treatment (immediate effect) and after treatment had been terminated (delayed effect). Both the immediate and delayed effects of CKD-602 showed a time dependent decrease in 4IC_{50}$ values. Drug uptake was biphasic and the second equilibrium level was obtained as early as at 24hr, indicating that the cumulative and delayed antitumor effects of CKD-602 were not due to slow drug uptake. On the other hand, CKD-602 treatment was sufficient to induce delayed cytotoxicity after 4hr, however, longer treatment (>24hr) enhanced its cytotoxicity due to the intracellular accumulation of the drug, which requires 24hr to reach maximum equilibrium concentration. In addition, $C^n$$\times$T=h analysis (n=0.481) indicated that increased exposure times may contribute more to the overall antitumor activity of CKD-602 than drug concentration. Additional studies to determine the details of the intracellular uptake kinetics (e.g., concentration dependency and retention studies) are needed in order to identify the optimal treatment schedules for the successful clinical development of CKD-602.

Antitumor Activity of 7-[2-(N-Isopropylamino)ethyl]-(20s)-camptothecin, CKD602, as a Potent DNA Topoisomerase I Inhibitor

  • Lee, Jun-Hee;Lee, Ju-Mong;Kim, Joon-Kyum;Ahn, Soon-Kil;Lee, Sang-Joon;Kim, Mie-Young;Jew, Sang-Sup;Park, Jae-Gab;Hong, Chung-Il
    • Archives of Pharmacal Research
    • /
    • v.21 no.5
    • /
    • pp.581-590
    • /
    • 1998
  • We developed a novel water-soluble camptothecin analobue, CKD602, and evaluated the inhibition of topoisomerase I and the antitumor activities against mammalian tumor cells and human tumor xenografts. CKD602 was a nanomolar inhibitor of the topoisomerase I enzyme in the cleavable complex assay. CKD602 was found to be 3 times and slightly more potent than topotecan and camptothecin as inhibitors of topoisomerase, respecitively. In tumor cell cytotoxicity, CKD602 was more potent than topotecan in 14 out of 26 human cancer cell lines tested, while it was comparable to camptothecin. CKD602 was tested for the in vivo antitumor activity against the human tumor xenograft models. CKD602 was able to imduce regression of established HT-29, WIDR and CX-1 colon tumors, LX-1 lung tumor, MX-1 breast tumor and SKOV-3 ovarian tumor as much as 80, 94, 76, 67, 87% and 88%, respectively, with comparable body weight changes to those of topotecan. Also the therapeutic margin (R/Emax: maximum tolerance dose/$ED-{58}$) of CKD602 was significantly higher than that of topotecan by 4 times. Efficacy was determined at the maximal tolerated dose levels using schedule dependent i.p. administration in mice bearing L1210 leukemia. On a Q4dx4 (every 4 day for 4 doses) schedule, the maximum tolerated dose (MTD) was 25 mg/kg per administration, which caused great weight loss and lethality in <5% tumor bearing mouse. this schedule brought significant increase in life span (ILS), 212%, with 33% of long-term survivals. The ex vivo antitumor activity of CKD602 was compared with that of topotecan and the mean antitumor index (ATI) values recorded for CKD602 were significantly higher than that noted for topotecan. From these results, CKD602 warrants further clinical investigations as a potent inhibitor of topoisomerase I.

  • PDF

Pharmacokinetic Study of CKD-602, A New Camptothecin Derivative: Absorption (신규 캄토테신계 항암제 CKD-602의 약물동태: 흡수)

  • Lee, Ju-Mong;Sohn, Yong-Sung;Kim, Joon-Kyum;Shin, Hee-Jong;Lee, Hyung-Ki;Lee, Sang-Joon;Hong, Chung Il
    • YAKHAK HOEJI
    • /
    • v.42 no.4
    • /
    • pp.431-436
    • /
    • 1998
  • The pharmacokinetics of CKD-602, a new camptothecin anticancer derivative, were studied in mice, rats and dogs following a single or multiple intravenous administration, and the following results were obtained. The blood levels of CKD-602 declined in biphasic fashions with peak plasma levels $(C_0)$ of $2.63{\mu}g/ml$ in mice, $2.27{\mu}g/ml$ in tumor bearing mice, $2.84{\mu}g/ml$ in rats at a dose of 20mg/kg, and of 0.02mcg/ml in dogs at a dose of 0.5mg/kg. The plasma half-lives $(t_{1/2}{\beta})$ were 9.55hr in mice, 9.94hr in tumor bearing mice, 9.98hr in rats and 12.75hr in dogs. AUC of CKD-602 was increased linearly with the dose at a range from 5 to 20mg/kg. Moreover, Cltot and Vdss were also not significantly changed with increasing the dose. On the other hand, after 5 daily intravenous bolus injection of CKD-602 (5mg/kg) in rats, $t_{1/2}{\beta}$, AUC and MRT of CKD-602 were 11.90hr, $3.19{\mu}g{\cdot}hr/ml$, and 11.61hr, respectively, which were slightly higher than after the single bolus injection.

  • PDF

Comparison of Single-Dose Toxicity by Intravenous Infusion or Bolus Injection with CKD-602, a Camptothecin Anticancer Agent in Rats (I): Toxic Effects with regard to Mortality and Clinical Signs

  • Kim, Choong-Yong;Han, Junghee;Yang, Byung-Chul;Kim, Joon-Kyum;Kim, Jong-Choon;Ha, Chang-Su;Han, Sang-Seop
    • Toxicological Research
    • /
    • v.20 no.4
    • /
    • pp.375-380
    • /
    • 2004
  • The toxicity of CKD-602 was investigated at doses of 0, 3, 9, and 27 mg/kg in rats, by administering the same total dose over 24-hr continuous infusion or bolus injection. CKD-602 treatment caused gastrointestinal symptoms such as diarrhea, soft stool, and soiled perineal region. It also decreased body weight at doses of 9 and 27 mg/kg in a dose-dependant manner. At 3 mg/ kg, clinical signs and body weight decrease were more severe in the infusion group than in the bolus group. In the bolus group, mortalities were 0/8, 0/8, 1/8, and 3/8 at 0, 3, 9, and 27 mg/kg, respectively, whereas those were 0/8, 1/8, 8/8, and 8/8 in the infusion group. $LD_{50}$ values were 36.25 mg/kg for bolus and 3.50 mg/kg for infusion, respectively. This finding indicates that the toxic potency of CKD-602 by continuous infusion is about 10 times higher than by bolus injection. Our findings suggest that the toxic effects of CKD-602 are dependant upon the duration of intravenous administration.