• Title/Summary/Keyword: CNFs

Search Result 74, Processing Time 0.024 seconds

Mechanical and Electrical Properties of Nonwoven Coated with CNFs/PVDF-HFP Composite (탄소나노섬유/PVDF-HFP 복합재로 코팅된 부직포의 역학적 및 전기적 특성 변화)

  • Lee, Sun-Hee
    • Fashion & Textile Research Journal
    • /
    • v.13 no.2
    • /
    • pp.279-284
    • /
    • 2011
  • In this study, the process of preparation nonwoven with coated carbon nano fibers (CNFs) /poly(vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP) composite solution is described. The various contents of CNFs/PVDF-HFP composite coated nonwoven were prepared and characterized by morphological, mechanical, and electrical methods. Nonwovens are coated with CNFs/PVDF-HFP composite solution and decreased the pick up ratio with increasing CNFs contents in range from 0% to 16%. In the results of SEM images, it was clear that the CNFs were evenly distributed in coated nonwoven by SEM images, the existence of CNFs in coated nonwoven was confirmed regularly. The mechanical properties of various contents of CNFs/PVDF-HFP coated nonwoven were examined. The tensile linearity and compression linearity increased with increasing CNFs contents. The electrical properties of the CNFs/PVDF-HFP coated nonwoven increased with increasing CNFs contents.

Synthesis and electrochemical performance of transition metal-coated carbon nanofibers as anode materials for lithium secondary batteries

  • Choi, Jin-Yeong;Hyun, Yura;Park, Heai-Ku;Lee, Chang-Seop
    • Journal of Industrial and Engineering Chemistry
    • /
    • v.68
    • /
    • pp.161-167
    • /
    • 2018
  • In this study, transition metal coated carbon nanofibers (CNFs) were synthesized and applied as anode materials of Li secondary batteries. CNFs/Ni foam was immersed into 0.01 M transition metal solutions after growing CNFs on Ni foam via chemical vapor deposition (CVD) method. Transition metal coated CNFs/Ni foam was dried in an oven at $80^{\circ}C$. Morphologies, compositions, and crystal quality of CNFs-transition metal composites were characterized by scanning electron microscopy (SEM), Raman spectroscopy (Raman), and X-ray photoelectron spectroscopy (XPS), respectively. Electrochemical characteristics of CNFs-transition metal composites as anodes of Li secondary batteries were investigated using a three-electrode cell. Transition metal/CNFs/Ni foam was directly employed as a working electrode without any binder. Lithium foil was used as both counter and reference electrodes while 1 M $LiClO_4$ was employed as the electrolyte after it was dissolved in a mixture of propylene carbonate:ethylene carbonate (PC:EC) at 1:1 volume ratio. Galvanostatic charge/discharge cycling and cyclic voltammetry measurements were taken at room temperature using a battery tester. In particular, the capacity of the synthesized CNFs-Fe was improved compared to that of CNFs. After 30 cycles, the capacity of CNFs-Fe was increased by 78%. Among four transition metals of Fe, Cu, Co and Ni coated on carbon nanofibers, the retention rate of CNFs-Fe was the highest at 41%. The initial capacity of CNFs-Fe with 670 mAh/g was reduced to 275 mAh/g after 30 cycles.

Preparation and Characterization of Poly(amide imide)-based Carbon Nanofibers/Epoxy Nanocomposites

  • Seo, Min-Kang;Choi, Kyeong-Eun;Park, Sang-Hee;Hong, Young-Taik;Park, Soo-Jin
    • Carbon letters
    • /
    • v.10 no.4
    • /
    • pp.329-334
    • /
    • 2009
  • In this work, the effect of carbon nanofibers (CNFs) addition on physicochemical characteristics of CNFs-reinforced epoxy matrix nanocomposites was studied. Poly(amide imide) solutions in dimethylformamide were electrospun into webs consisting of $250{\pm}50$ nm fibers which were used to produce CNFs through stabilization and carbonization processes. As a result, the CNFs with average diameter of $200{\pm}20$ nm were obtained after carbonization process. The nanocomposites with CNFs showed an improvement of thermal stability parameters and fracture toughness factors, compared to those of the specimen without CNFs, which could be probably attributed to the higher specific surface area and larger aspect ratio of CNFs, resulting in improving the mechanical interlocking in the nanocomposites. Also, the applied external loading can effectively transfer to CNFs because strong interactions are resulted between the epoxy matrix and the CNFs.

Preparation of Carbon Nanofibers by Catalytic CVD and Their Purification

  • Lim, Jae-Seok;Lee, Seong-Young;Park, Sei-Min;Kim, Myung-Soo
    • Carbon letters
    • /
    • v.6 no.1
    • /
    • pp.31-40
    • /
    • 2005
  • The carbon nanofibers (CNFs) were synthesized through the catalytic decomposition of hydrocarbons in a quartz tube reactor. The CNFs prepared from $C_3H_8$ at $550^{\circ}C$ was selected as the purification sample due to the higher content of impurity than that prepared from other conditions. In this study, we carried out the purification of CNFs by oxidation in air or carbon dioxide after acid treatment, and investigated the influence of purification parameters such as kind of acid, concentration, oxidation time, and oxidation temperature on the structure of CNFs. The metal catalysts could be easily eliminated from the prepared CNFs by liquid phase purification with various acids and it was verified by ICP analysis, in which, for example, Ni content decreased from 2.51% to 0.18% with 8% nitric acid. However, the particulate carbon and heterogeneous fibers were not removed from the prepared CNFs by thermal oxidation in air and carbon dioxide. This result can be explained by that the direction of graphene sheet in CNFs is vertical to the fiber axis and the CNFs are oxidized at about the similar rate with the impurity carbon.

  • PDF

Effect of the Ni Catalyst Size and Shape on the Variation of the Geometries for the As-grown Carbon Coils

  • Jang, Chang-Young;Kim, Sung-Hoon
    • Journal of the Korean institute of surface engineering
    • /
    • v.46 no.4
    • /
    • pp.175-180
    • /
    • 2013
  • Carbon nanofilaments (CNFs) could be synthesized using $C_2H_2/H_2$ as source gases and $SF_6$ as an incorporated additive gas under thermal chemical vapor deposition system. Ni powders were used as the catalyst for the formation of the CNFs. During the initial deposition stage, the initiation of the CNFs on the Ni catalyst was investigated. The geometries of the as-grown CNFs on Ni catalyst were strongly dependent on the size and/or the shape of Ni catalyst. Small size catalyst (<150 nm in diameter) gives rise to the unidirectional growth of the CNFs. On the other hand, large size catalyst (150~500 nm), the bidirectional growth of the CNFs could be observed. Particularly, the well faceted parallelogram-shaped Ni catalyst could give rise to the bidirectional growth of the CNFs having the symmetrically opposite direction. Eventually, these bidirectional growths of CNFs were understood to form the well-developed carbon microcoils (CMCs). Based on these results, the optimal shape and the size of the Ni catalyst to form the CMCs were discussed.

Carbon Nanofibers with Controlled Size and Morphology Synthesized with Ni-MgO Catalyst Treated by Mechanochemical Process

  • Fangli Yuan;Ryu, Ho-Jin;Kang, Yong-Ku;Park, Soo-Jin;Lee, Jae-Rock
    • Journal of the Semiconductor & Display Technology
    • /
    • v.3 no.1
    • /
    • pp.9-13
    • /
    • 2004
  • Carbon nanofibers (CNFs) with uniform diameter and controlled size were prepared from catalytic decomposition of $\textrm{C}_{2}\textrm{H}_{2}$ with Ni-MgO catalyst treated by mechanochemical (MC) process. The properties of Ni catalyst, such as size, distribution and morphology, can be governed by tuning grinding time in MC process. As a result, size and structure of CNFs can be tailored. The effect of grinding time to the as-grown CNFs was studied. CNFs with diameter from 10-70 nm were synthesized. CNFs with bundle formation sharing one tip and twisted CNFs were also synthesized with catalyst treated by MC process.

  • PDF

Fabrication of Ru Nanoparticles Decorated Porous Carbon Nanofibers for Electrochemical Capacitors (Electrochemical capacitor를 위한 Ru 나노입자가 담지 된 다공성 탄소 나노섬유의 제조)

  • Lee, Yu-Jin;An, Geon-Hyoung;Ahn, Hyo-Jin
    • Korean Journal of Materials Research
    • /
    • v.24 no.1
    • /
    • pp.37-42
    • /
    • 2014
  • Well-distributed ruthenium (Ru) nanoparticles decorated on porous carbon nanofibers (CNFs) were synthesized using an electrospinning method and a reduction method for use in high-performance elctrochemical capacitors. The formation mechanisms including structural, morphological, and chemical bonding properties are demonstrated by means of field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS). To investigate the optimum amount of the Ru nanoparticles decorated on the porous CNFs, we controlled three different weight ratios (0 wt%, 20 wt%, and 40 wt%) of the Ru nanoparticles on the porous CNFs. For the case of 20 wt% Ru nanoparticles decorated on the porous CNFs, TEM results indicate that the Ru nanoparticles with ~2-4 nm size are uniformly distributed on the porous CNFs. In addition, 40 wt% Ru nanoparticles decorated on the porous CNFs exhibit agglomerated Ru nanoparticles, which causes low performance of electrodes in electrochemical capacitors. Thus, proper distribution of 20 wt% Ru nanoparticles decorated on the porous CNFs presents superior specific capacitance (~280.5 F/g at 10 mV/s) as compared to the 40 wt% Ru nanoparticles decorated on the porous CNFs and the only porous CNFs. This enhancement can be attributed to the synergistic effects of well-distributed Ru nanoparticles and porous CNF supports having high surface area.

Synthesis of CNFs(Carbon Nanofibers)/DAAQ electrode for Supercapacitor (슈퍼커패시티용 DAAQ/CNFs 전극의 제조)

  • Lee, Tae-Soo;Lee, Yun-Hee;Choi, Weon-Kyung;Park, Soo-Gil
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.07b
    • /
    • pp.1220-1223
    • /
    • 2003
  • A new type electric double layer capacitor (EDLC) was constructed by using carbon nanofibers (CNFs) and DAAQ(1,5-diaminoanthraquinone) electrode. Carbonaceous materials are found in variety forms such as graphite, diamond, carbon fibers etc. While all the carbon nanofibers include impurities such as amorphous carbon, nanoparticles, catalytic metals and incompletely grown carbons. We have eliminated of Ni particles and some carbonaceous particles in nitric acid. Nitric acid treated CNFs could be covered with very thin DAAQ oligomer from the results of CV and TG analyses and SEM images. A crystalline supramolecular oligomer of 1,5-diaminoanthraquinone(DAAQ) was successfully prepared as a thin film by electrochemical oxidation from an acidic non-aqueous medium. DAAQ oligomer film exhibited a specific capacity as 45-50 Ah/kg in 4M $H_2SO_4$. Its electrochemical characteristics were investigated by cyclic voltammetry. And compared with different electrolyte of aqueous type. During ultrasonic irradiation CNFs was to disperse in 0.1M $H_2SO_4$. As a result, CNFs coated by DAAQ composite electrode showed relatively good electrochemical behaviors.

  • PDF

Preparation and Electrochemical Characteristics of DAAQ/CNFs Composite electrode for Supercapacitor (DAAQ가 코팅된 슈퍼커패시터용 CNFs전극 활물질의 제조 및 전기 화학적 특성)

  • Kim, Hong-Il;Choi, Weon-Kyung;Park, Soo-Gil
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.07b
    • /
    • pp.1226-1229
    • /
    • 2004
  • Supercapacitors, also known as electrochemical capacitors, are being extensively studied due to an increasing demand for energy-storage systems. These devices offer many advantages over conventional secondary batteries, which include the ability of fast charge propagation, long cycle-life and better storage efficiency. That is to say supercapacitor bridges the gap between conventional capacitors and batteries. A new type electric double layer capacitor (EDLC) also called supercapacitors. Recently, supercapacitors concerns about their high power density and energy density. So we experiment with EDLC by using carbon nanofibers (CNFs) and DAAQ(1,5-diaminoanthraquinone) electrode. The electrode for supercapacitor was prepared by synthesis of DAAQ covered CNFs. CNFs could be covered with very thin DAAQ oligomer from the results of CV, XRD, DSC, SEM images, and TEM images. Dissolved electrode active material in NMP solution has been drop-coated on carbon plate. Its electrochemical characteristics were investigated by cyclic voltammograms. And compared with different electrolyte of aqueous type. As a result, CNFs coated by DAAQ composite electrode showed relatively good electrochemical behaviors with respect to specific capacity and scan rate dependency.

  • PDF

Electrochemical Characteristics of DAAQ/CNFs electrode for Supercapacitor (슈퍼커패시터용 DAAQ/CNFs 전극의 전기화학적 특성)

  • Kim, Hong-Il;Choi, Weon-Kyung;Park, Soo-Gil
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.07b
    • /
    • pp.1184-1187
    • /
    • 2003
  • Electrochemical capacitors are becoming attractive energy storage systems particularly for applications involving high power requirements such as hybrid systems consisting of batteries and electrochemical capacitors for electric vehicle propulsion. A new type electric double layer capacitor (EDLC) was constructed by using carbon nanofibers (CNFs) and DAAQ(1,5-diaminoanthraquinone) electrode. Carbonaceous materials are found in variety forms such as graphite, diamond, carbon fibers etc. While all the carbon nanofibers include impurities such as amorphous carbon, nanoparticles, catalytic metals and incompletely grown carbons. We have eliminated of Ni particles and some carbonaceous particles in nitric acid. Nitric acid treated CNFs could be covered with very thin DAAQ oligomer from the results of CV and TG analyses and SEM images. DAAQ oligomer film exhibited a specific capacity as 45-50 Ah/kg in 4M $H_2SO_4$. We established Process Parameters of the technique for the formation of nano-structured materials. Furthermore, improved the capacitive properties of the nano structured CNFs electrodes using controlled solution chemistry. As a result, CNFs coated by DAAQ composite electrode showed relatively good electrochemical behaviors in acidic electrolyte system with respect to specific capacity and scan rate dependency.

  • PDF