• Title/Summary/Keyword: CNN

Search Result 2,011, Processing Time 0.027 seconds

Performance Analysis of Optical Camera Communication with Applied Convolutional Neural Network (합성곱 신경망을 적용한 Optical Camera Communication 시스템 성능 분석)

  • Jong-In Kim;Hyun-Sun Park;Jung-Hyun Kim
    • Smart Media Journal
    • /
    • v.12 no.3
    • /
    • pp.49-59
    • /
    • 2023
  • Optical Camera Communication (OCC), known as the next-generation wireless communication technology, is currently under extensive research. The performance of OCC technology is affected by the communication environment, and various strategies are being studied to improve it. Among them, the most prominent method is applying convolutional neural networks (CNN) to the receiver of OCC using deep learning technology. However, in most studies, CNN is simply used to detect the transmitter. In this paper, we experiment with applying the convolutional neural network not only for transmitter detection but also for the Rx demodulation system. We hypothesize that, since the data images of the OCC system are relatively simple to classify compared to other image datasets, high accuracy results will appear in most CNN models. To prove this hypothesis, we designed and implemented an OCC system to collect data and applied it to 12 different CNN models for experimentation. The experimental results showed that not only high-performance CNN models with many parameters but also lightweight CNN models achieved an accuracy of over 99%. Through this, we confirmed the feasibility of applying the OCC system in real-time on mobile devices such as smartphones.

Effective Classification Method of Hierarchical CNN for Multi-Class Outlier Detection (다중 클래스 이상치 탐지를 위한 계층 CNN의 효과적인 클래스 분할 방법)

  • Kim, Jee-Hyun;Lee, Seyoung;Kim, Yerim;Ahn, Seo-Yeong;Park, Saerom
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2022.07a
    • /
    • pp.81-84
    • /
    • 2022
  • 제조 산업에서의 이상치 검출은 생산품의 품질과 운영비용을 절감하기 위한 중요한 요소로 최근 딥러닝을 사용하여 자동화되고 있다. 이상치 검출을 위한 딥러닝 기법에는 CNN이 있으며, CNN을 계층적으로 구성할 경우 단일 CNN 모델에 비해 상대적으로 성능의 향상을 보일 수 있다는 것이 많은 선행 연구에서 나타났다. 이에 MVTec-AD 데이터셋을 이용하여 계층 CNN이 다중 클래스 이상치 판별 문제에 대해 효과적인지를 탐구하고자 하였다. 실험 결과 단일 CNN의 정확도는 0.7715, 계층 CNN의 정확도는 0.7838로 다중 클래스 이상치 판별 문제에 있어 계층 CNN 방식 접근이 다중 클래스 이상치 탐지 문제에서 알고리즘의 성능을 향상할 수 있음을 확인할 수 있었다. 계층 CNN은 모델과 파라미터의 개수와 리소스의 사용이 단일 CNN에 비하여 기하급수적으로 증가한다는 단점이 존재한다. 이에 계층 CNN의 장점을 유지하며 사용 리소스를 절약하고자 하였고 K-means, GMM, 계층적 클러스터링 알고리즘을 통해 제작한 새로운 클래스를 이용해 계층 CNN을 구성하여 각각 정확도 0.7930, 0.7891, 0.7936의 결과를 얻을 수 있었다. 이를 통해 Clustering 알고리즘을 사용하여 적절히 물체를 분류할 경우 물체에 따른 개별 상태 판단 모델을 제작하는 것과 비슷하거나 더 좋은 성능을 내며 리소스 사용을 줄일 수 있음을 확인할 수 있었다.

  • PDF

Scale-aware Faster R-CNN for Caltech Pedestrian Detection (Caltech 보행자 감지를 위한 Scale-aware Faster R-CNN)

  • Byambajav, Batkhuu;Alikhanov, Jumabek;Jo, Geun-Sik
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2016.10a
    • /
    • pp.506-509
    • /
    • 2016
  • We present real-time pedestrian detection that exploit accuracy of Faster R-CNN network. Faster R-CNN has shown to success at PASCAL VOC multi-object detection tasks, and their ability to operate on raw pixel input without the need to design special features is very engaging. Therefore, in this work we apply and adjust Faster R-CNN to single object detection, which is pedestrian detection. The drawback of Faster R-CNN is its failure when object size is small. Previously, small sized object problem was solved by Scale-aware Network. We incorporate Scale-aware Network to Faster R-CNN. This made our method Scale-aware Faster R-CNN (DF R-CNN) that is both fast and very accurate. We separated Faster R-CNN networks into two sub-network, that is one for large-size objects and another one for small-size objects. The resulting approach achieves a 28.3% average miss rate on the Caltech Pedestrian detection benchmark, which is competitive with the other best reported results.

Improvement of Facial Emotion Recognition Performance through Addition of Geometric Features (기하학적 특징 추가를 통한 얼굴 감정 인식 성능 개선)

  • Hoyoung Jung;Hee-Il Hahn
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.24 no.1
    • /
    • pp.155-161
    • /
    • 2024
  • In this paper, we propose a new model by adding landmark information as a feature vector to the existing CNN-based facial emotion classification model. Facial emotion classification research using CNN-based models is being studied in various ways, but the recognition rate is very low. In order to improve the CNN-based models, we propose algorithms that improves facial expression classification accuracy by combining the CNN model with a landmark-based fully connected network obtained by ASM. By including landmarks in the CNN model, the recognition rate was improved by several percent, and experiments confirmed that further improved results could be obtained by adding FACS-based action units to the landmarks.

Synchronization and Secure Communication in Hyper-chaos system using SC-CNN (SC-CNN을 이용한 하이퍼카오스 동기화와 비밀통신)

  • 배영철;임정석;황인호;김주완
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.5 no.6
    • /
    • pp.1175-1183
    • /
    • 2001
  • In this paper, we use hyper chaos circuit which is made through the phase differences which is generated during the process of weak-coupling of CNN between two and more chaos attractors. Notwithstanding the complexity of the hyper chaos, we could do the synchronization and according to it, Secure communication through this method coo]d be accomplished. On this research, we configurated 2-double scroll and 3-double scroll circuit ,not using Chua circuit, but SC-CNN(State-Controlled CNN) which is more flexible to configure the system.

  • PDF

Comparison of Region-based CNN Methods for Defects Detection on Metal Surface (금속 표면의 결함 검출을 위한 영역 기반 CNN 기법 비교)

  • Lee, Minki;Seo, Kisung
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.67 no.7
    • /
    • pp.865-870
    • /
    • 2018
  • A machine vision based industrial inspection includes defects detection and classification. Fast inspection is a fundamental problem for many applications of real-time vision systems. It requires little computation time and localizing defects robustly with high accuracy. Deep learning technique have been known not to be suitable for real-time applications. Recently a couple of fast region-based CNN algorithms for object detection are introduced, such as Faster R-CNN, and YOLOv2. We apply these methods for an industrial inspection problem. Three CNN based detection algorithms, VOV based CNN, Faster R-CNN, and YOLOv2, are experimented for defect detection on metal surface. The results for inspection time and various performance indices are compared and analysed.

Layer-wise Feature Extraction Capacity using Pre-trained CNN (사전학습된 CNN의 계층별 특징추출능력연구)

  • Lee, Jaehwan;Yoon, Sook;Park, Dong Sun
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2016.05a
    • /
    • pp.435-436
    • /
    • 2016
  • 최근 객체인식 분야에서는 Convolutional Neural Network (CNN)이 주목받고 있다. CNN의 특징 중 하나는 입력이미지로 부터 특징 추출 방법을 스스로 학습한다는 것이다. 전통적은 객체인식 방법에서는 hand-written feature extractor를 사용하지만, CNN은 스스로가 특징을 추출한다. 하지만 CNN은 많은 학습데이터와 학습 시간을 필요로 한다. 우리는 객체인식 데이터로 사전학습된 CNN을 사용하여 특징을 추출하였고, 이 특징으로 People re-identification을 수행하였다. 이 과정에서 어떠한 학습도 하지 않았지만 CNN은 다른 영상처리 응용에 대해서도 비교적 좋은 성능을 보여주었다.

  • PDF

Analysis of Evolutionary Optimization Methods for CNN Structures (CNN 구조의 진화 최적화 방식 분석)

  • Seo, Kisung
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.67 no.6
    • /
    • pp.767-772
    • /
    • 2018
  • Recently, some meta-heuristic algorithms, such as GA(Genetic Algorithm) and GP(Genetic Programming), have been used to optimize CNN(Convolutional Neural Network). The CNN, which is one of the deep learning models, has seen much success in a variety of computer vision tasks. However, designing CNN architectures still requires expert knowledge and a lot of trial and error. In this paper, the recent attempts to automatically construct CNN architectures are investigated and analyzed. First, two GA based methods are summarized. One is the optimization of CNN structures with the number and size of filters, connection between consecutive layers, and activation functions of each layer. The other is an new encoding method to represent complex convolutional layers in a fixed-length binary string, Second, CGP(Cartesian Genetic Programming) based method is surveyed for CNN structure optimization with highly functional modules, such as convolutional blocks and tensor concatenation, as the node functions in CGP. The comparison for three approaches is analysed and the outlook for the potential next steps is suggested.

Voting and Ensemble Schemes Based on CNN Models for Photo-Based Gender Prediction

  • Jhang, Kyoungson
    • Journal of Information Processing Systems
    • /
    • v.16 no.4
    • /
    • pp.809-819
    • /
    • 2020
  • Gender prediction accuracy increases as convolutional neural network (CNN) architecture evolves. This paper compares voting and ensemble schemes to utilize the already trained five CNN models to further improve gender prediction accuracy. The majority voting usually requires odd-numbered models while the proposed softmax-based voting can utilize any number of models to improve accuracy. The ensemble of CNN models combined with one more fully-connected layer requires further tuning or training of the models combined. With experiments, it is observed that the voting or ensemble of CNN models leads to further improvement of gender prediction accuracy and that especially softmax-based voters always show better gender prediction accuracy than majority voters. Also, compared with softmax-based voters, ensemble models show a slightly better or similar accuracy with added training of the combined CNN models. Softmax-based voting can be a fast and efficient way to get better accuracy without further training since the selection of the top accuracy models among available CNN pre-trained models usually leads to similar accuracy to that of the corresponding ensemble models.

Hierarchical CNN-Based Senary Classification of Steganographic Algorithms (계층적 CNN 기반 스테가노그래피 알고리즘의 6진 분류)

  • Kang, Sanhoon;Park, Hanhoon
    • Journal of Korea Multimedia Society
    • /
    • v.24 no.4
    • /
    • pp.550-557
    • /
    • 2021
  • Image steganalysis is a technique for detecting images with steganographic algorithms applied, called stego images. With state-of-the-art CNN-based steganalysis methods, we can detect stego images with high accuracy, but it is not possible to know which steganographic algorithm is used. Identifying stego images is essential for extracting embedded data. In this paper, as the first step for extracting data from stego images, we propose a hierarchical CNN structure for senary classification of steganographic algorithms. The hierarchical CNN structure consists of multiple CNN networks which are trained to classify each steganographic algorithm and performs binary or ternary classification. Thus, it classifies multiple steganogrphic algorithms hierarchically and stepwise, rather than classifying them at the same time. In experiments of comparing with several conventional methods, including those of classifying multiple steganographic algorithms at the same time, it is verified that using the hierarchical CNN structure can greatly improve the classification accuracy.