• Title/Summary/Keyword: CNT fiber

Search Result 107, Processing Time 0.03 seconds

Electrochemical Sensor for Non-Enzymatic Glucose Detection Based on Flexible CNT Fiber Electrode Dispersed with CuO Nanoparticles (산화구리 나노입자가 분산된 CNT fiber 유연 전극 기반의 글루코스 검출용 비효소적 전기화학센서)

  • Min-Jung Song
    • Korean Chemical Engineering Research
    • /
    • v.61 no.1
    • /
    • pp.52-57
    • /
    • 2023
  • This study is a basic research for the development of high performance flexible electrode material. To enhance its electrochemical property, CuO nanoparticles (CuO NPs) were introduced and dispersed on surface of CNT fiber through electrochemical deposition method. The CNT fiber/CuO NPs electrode was fabricated and applied to electrochemical non-enzymatic glucose sensor. Surface morphology and elemental composition of the CNT fiber/CuO NPs electrode was characterized by scanning electron microscope (SEM) with energy dispersive X-ray spectrometry (EDS). And its electrochemical characteristics were investigated by cyclic voltammetry, electrochemical impedance spectroscopy and chronoamperometry. The CNT fiber/CuO NPs electrode exhibited the good sensing performance for glucose detection such as high sensitivity, wide linear range, low detection limit and good selectivity due to synergetic effect of CNT fiber and CuO NPs. Based on the unique property of CNT fiber, CuO NPs were provide large surface area, enhanced electrocatalytic activity, efficient electron transport property. Therefore, it is expected to develop high performance flexible electrode materials using various nanomaterials.

Enzyme-Free Glucose Sensing with Polyaniline-Decorated Flexible CNT Fiber Electrode (Polyaniline을 이용한 CNT fiber 유연 전극 기반의 비효소적 글루코스 검출)

  • Song, Min-Jung
    • Korean Chemical Engineering Research
    • /
    • v.60 no.1
    • /
    • pp.1-6
    • /
    • 2022
  • As the demand for wearable devices increases, many studies have been studied on the development of flexible electrode materials recently. In particular, the development of high-performance flexible electrode materials is very important for wearable sensors for healthcare because it is necessary to continuously monitor and accurately detect body information such as body temperature, heart rate, blood glucose, and oxygen concentration in real time. In this study, we fabricated the nonenzymatic glucose sensor based on polyaniline/carbon nanotube fiber (PANI/CNT fiber) electrode. PANI layer was synthesized on the flexible CNT fiber electrode through electrochemical polymerization process in order to improve the performance of a flexible CNT fiber based electrode material. Surface morphology of the PANI/CNT fiber electrode was observed by scanning electron microscopy. And its electrochemical characteristics were investigated by chronoamperometry, cyclic voltammetry, electrochemical impedance spectroscopy. Compared to bare CNT fiber electrode, this PANI/CNT fiber electrode exhibited small electron transfer resistance, low peak separation potential and large surface area, resulting in enhanced sensing properties for glucose such as wide linear range (0.024~0.39 and 1.56~50 mM), high sensitivity (52.91 and 2.24 ㎂/mM·cm2), low detection limit (2 μM) and good selectivity. Therefore, it is expected that it will be possible to develop high performance CNT fiber based flexible electrode materials using various nanomaterials.

A Non-enzymatic Hydrogen Peroxide Sensor Based on CuO Nanoparticles/polyaniline on Flexible CNT Fiber Electrode (CuO Nanoparticles/polyaniline/CNT fiber 유연 전극 기반의 H2O2 검출용 비효소적 전기화학 센서)

  • Min-Jung Song
    • Korean Chemical Engineering Research
    • /
    • v.61 no.2
    • /
    • pp.196-201
    • /
    • 2023
  • In this study, a CNT fiber flexible electrode grafted with CuO nanoparticles (CuO NPs) and polyaniline (PANI) was developed and applied to a nonenzymatic electrochemical sensor for H2O2 detection. CuO NPs/PANI/CNT fiber electrode was fabricated through the synthesis and deposition of PANI and CuO NPs on the CNT fiber surface using an electrochemical method. Surface morphology and elemental composition of the CuO NPs/PANI/CNT fiber electrode were characterized by scanning electron microscope with energy dispersive X-ray spectrometry. And its electrochemical characteristics were investigated by cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS) and chronoamperometry (CA). Compared with a bare CNT fiber as a control group, the CuO NPs/PANI/CNT fiber electrode showed a 4.78-fold increase in effective surface area and a 8.33-fold decrease in electron transfer resistance, which leads to excellent electrochemical properties such as a good electrical conductivity and an efficient electron transfer. These improved characteristics were due to the synergistic effect through the grafting of CNT fiber, PANI and CuO NPs. As a result, this electrode enhanced the H2O2 sensing performance.

Electrical Properties of CNT/Al/Cu Composite Fiber Deposited by Thermal Vacuum Evaporation (열 증착법으로 제조된 CNT/Al/Cu 복합 파이버의 전기적 특성)

  • Kim, Jong-Seok;Shin, Paik-Kyun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.34 no.2
    • /
    • pp.105-109
    • /
    • 2021
  • CNT fiber has been in the spotlight as a conductor, but the conductivity of CNT fibers do not match that of CNT. This study reveals that the conductivity of CNT fiber can be improved by depositing Al/Cu through vacuum evaporation. Cu is commonly used for deposition on CNT fibers. But low bonding strength of the interface between CNT and Cu could be a disadvantage. To overcome this, Al was deposited on the CNT fiber for forming aluminum carbide islands to increase the interfacial bonding strength. The conductivity characteristics were improved as the deposition time increased. The resistance was measured as a function of temperature, demonstrating that the temperature coefficient of resistance (TCR) is improved to be 241 ppm/℃ in comparison with that of as-received CNT fibers at -1,251 ppm/℃, when the CNT fibers are deposited with Al and Cu, respectively, for 90s and for 540s.

Electrical Properties of Yarned Carbon Nanotube Fiber Resistors (Yarned CNT Fiber 저항체의 전기적 특성)

  • Lim, Youngtaek;Lee, Sunwoo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.30 no.1
    • /
    • pp.59-62
    • /
    • 2017
  • CNT (carbon nanotube) resistors with low resistance and negative TCR (temperature coefficient of resistance) were fabricated with yarned CNT (carbon nanotube) fibers. The CNT fibers were prepared by yarning CNTs grown on the silicone substrate by CVD (chemical vapor deposition) method. The CNT resistors were fabricated by winding CNT fibers on the surface of ceramic rod. Both metal terminals were connected with the CNT fiber wound on the ceramic rod. We measured electrical resistance and thermal stability with the number of CNT fibers wound. The CNT resistor system shows linearly decreased resistance with the number of CNTs wound on the ceramic rod and saturated at 20 strands. The CNT resistor system has negative TCR between $-1,000{\sim}-2,000ppm/^{\circ}C$ and stable frequency properties under 100 kHz.

A Comparative Study on the Applicability of CNT-coated Glass Fiber for Wind Blades (풍력 블레이드를 위한 CNT 코팅 유리섬유의 적용성에 대한 비교 연구)

  • Jang, Hong-Kyu;Kim, Young-Chul
    • Composites Research
    • /
    • v.29 no.6
    • /
    • pp.336-341
    • /
    • 2016
  • This paper conducted the study on the electromagnetic and mechanical applicability of CNT-coated glass fiber for wind blades. Large-size wind blade has the serious pending problems to meet the target, such as interfering radar signals, increasing weights, and increasing repair costs. In this paper, we are suggesting the CNT-coated glass fiber in order to overcome these problems. First, the CNTs were strongly coated on the surfaces of glass fiber by suggested coating process, and the CNT-coated glass fiber/epoxy composites were fabricated by Va-RTM process. We designed and fabricated a radar absorbing structure using the CNT-coated glass fiber, which showed over 90% radar absorbing performance between 8.3 and 12.1 GHz frequency. In addition, we confirmed the improvement of mechanical properties on the strength and modulus of tensile, compressive, and in-plane shear.

Processing and Characterization of Polyamide 610/Carbon Fiber/Carbon Nanotube Composites through In-Situ Interfacial Polymerization (계면중합법을 이용한 폴리아마이드 610/탄소섬유/탄소나노튜브 복합재 제조 및 물성 평가)

  • Cho, Beom-Gon;Hwang, Sang-Ha;Park, Young-Bin
    • Composites Research
    • /
    • v.33 no.6
    • /
    • pp.415-420
    • /
    • 2020
  • The interfacial properties in carbon fiber composites, which control the overall mechanical properties of the composites, are very important. Effective interface enhancement work is conducted on the modification of the carbon fiber surface with carbon nanotubes (CNTs). Nonetheless, most surface modifications methods do have their own drawbacks such as high temperatures with a range of 600~1000℃, which should be implemented for CNT growth on carbon fibers that can cause carbon fiber damages affecting deterioration of composites properties. This study includes the use of in-situ interfacial polymerization of polyamide 610/CNT to fabricate the carbon fiber composites. The process is very fast and continuous and can disperse CNTs with random orientation in the interface resulting in enhanced interfacial properties. Scanning electron microscopy was conducted to investigate the CNT dispersion and composites morphology, and the thermal stability of the composites was analyzed via thermogravimetric analysis. In addition, fiber pull-out tests were used to assess interfacial strength between fiber and matrix.

Fabrication of carbon nano tube reinforced grass fiber composite and investigation of fracture surface of reinforced composites (CNT 첨가에 따른 유리섬유/섬유 복합재 제작 및 특성 평가)

  • Kim, Hyeongtae;Lee, Do-Hyeon;An, Woo-Jin;Oh, Chang-Hwan;Je, Yeonjin;Lee, Dong-Park;Cho, Kyuchul;Park, Jun Hong
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.31 no.4
    • /
    • pp.159-165
    • /
    • 2021
  • The fiber composites have been investigated as lightweight structure material platforms for aerospace applications because their strength can be enhanced by adding reinforcement without a significant increase in weight. In this study, the fabrication and characterization of carbon nanotube (CNT) reinforced glass fiber composites are demonstrated to enhance the tensile strength of longitudinal direction along the glass fibers. Due to the reinforcement of CNT in epoxy layers, the yield strength of fiber/epoxy composites is enhanced by about 10 %. Furthermore, using scanning electron microscopy, analysis of fracture surfaces shows that mixed CNT in epoxy layers acts as necking agents between fractured surfaces of fiber/epoxy; thereby, initiation and evolution of crack across fiber composite can be suppressed by CNT necking between fractured surfaces.

A Study on Heating Element Properties of Carbon Nanotube/Silicon Carbonitride Composite Sheet using Branched Structured Polysilazane as Precursor (가지 달린 구조의 폴리실라잔을 전구체로 이용해 제조한 카본 나노튜브/실리콘 카보나이트라이드 복합체 시트의 발열특성에 관한 연구)

  • Huh, Tae-Hwan;Song, Hyeon Jun;Jeong, Yeong Jin;Kwark, Young-Je
    • Composites Research
    • /
    • v.33 no.6
    • /
    • pp.395-400
    • /
    • 2020
  • In this paper, we manufactured silsesquiaznae (SSQZ)-coated carbon nanotube (CNT) surface heating elements, which allowed stable heating at high temperatures. The prepared composite sheet was confirmed by FE-SEM that the SSQZ fully coated the surface of CNT sheet. Furthermore, it was also confirmed that the silicon carbonitride (SiCN) ceramic formed by heat treatment of 800℃ have no defects found and maintain intact structure. The CNT/SiCN composite sheet was able to achieve higher thermal stability than raw CNT sheets in both nitrogen and air atmosphere. Finally, the CNT/SiCN composite sheet was possible to heat up at a temperature of over 700℃ in the atmosphere, and the re-heating was successfully operated after cooling.

Nondestructive Damage Sensitivity of Carbon Nanotube and Nanofiber/Epoxy Composites Using Electro-Micromechanical Technique and Acoustic Emission (Electro-Micromechanical 시험법과 음향방출을 이용한 탄소 나노튜브와 나노섬유 강화 에폭시 복합재료의 비파괴적 손상 감지능)

  • Kim, Dae-Sik;Park, Joung-Man;Lee, Jae-Rock;Kim, Tae-Wook
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2003.04a
    • /
    • pp.117-120
    • /
    • 2003
  • Electro-micromechanical techniques were applied using four-probe method for carbon nanotube (CNT) or nanofiber (CNF)/epoxy composites with their content. Carbon black (CB) was used to compare with CNT and CNF. The fracture of carbon fiber was detected by nondestructive acoustic emission (AE) relating to electrical resistivity for double-matrix composites test. Sensing for fiber tension was performed by electro-pullout test under uniform cyclic strain. The sensitivity for fiber damage such as fiber fracture and fiber tension was the highest for CNT/epoxy composites, and in CB case they were the lowest compared with CNT and CNF. Reinforcing effect of CNT obtained from apparent modulus measurement was the highest in the same content. The results obtained from sensing fiber damage were correlated with the morphological observation of nano-scale structure using FE-SEM. The information on fiber damage and matrix deformation and reinforcing effect of carbon nanocomposites could be obtained from electrical resistivity measurement as a new concept of nondestructive evaluation.

  • PDF