• Title/Summary/Keyword: COB LED

Search Result 35, Processing Time 0.03 seconds

Thermal Characteristics of Designed Heat Sink for 13.5W COB LED Down Light (주거용 13.5W COB LED 다운라이트 방열판 형상 설계에 따른 열 특성 분석)

  • Kwon, Jae-Hyun;Kim, Hyo-Jun;Park, Keon-Jun;Kim, Yong-Kab;Hoang, Geun-Chang
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.9 no.5
    • /
    • pp.561-566
    • /
    • 2014
  • The high power COB(Chip on Board) LED, densely arranged chips on a board, are increasing to resolve heat problems in LED that has luminous semiconductor chips as main materials. In case of high-power COB LED, protection against heat is necessary due to the power consumption is high. Also if the temperature of device increases, the optical emission becomes less efficient and the life rapidly reduces due to thermal stress. This study packaged 13.5W COB LED and heat sink with difference form and produced 13.5W COB LED down-light heat sink by analyzing the thermal modes with Solidworks Flow Simulation. And finally it analyzed and evaluated the thermal modes using contacting and non-contacting thermometers.

COB, COH Package LED Module Thermal Analysis Simulation (COB, COH Package LED Module 열 해석 시뮬레이션)

  • Choi, Keum-Yeon;Eo, Ik-Soo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.11
    • /
    • pp.5117-5122
    • /
    • 2011
  • In this paper, thermal analysis simulation program by taking advantage of COMSOL Multiphysics, LED Module for the production of the most preferred package type, omitting the COH Type COB Type and board simulation of the thermal analysis is in progress. LED Module that passes through the Heat-sink of the simulation results, depending on the location of the COB Type Max. Approximately $78^{\circ}C$ ~ Min. Approximately $62^{\circ}C$, COH Type the Max. Approximately $88^{\circ}C$ ~ Min. Approximately $67^{\circ}C$ has been confirmed that the temperature stability. Compared with COB Type Max. AIthough temperature difference is about $10^{\circ}C$, Min. At a temperature of about $5^{\circ}C$ confirmed to be enough to reduce the gap, LED Point confirming the results of the temperature curves for COB Type Max. Approximately $100^{\circ}C$ ~ Min. Approximately $77^{\circ}C$, COH Type the Max. Approximately $100^{\circ}C$ ~ Min. Approximately $86^{\circ}C$ temperature stability was confirmed that, COB Type COH Type, compared to approximately $10^{\circ}C$ temperature was higher.

A Comparative Analysis of Thermal Properties of COB LED based on Thermoelectric Device Structure (열전소자 구조에 따른 COB LED의 방열 성능 비교 분석)

  • Kim, Hyo-Jun;Kang, Eun-Yeong;Im, Seong-Bin;Hoang, Geun-Chang;Kim, Yong-Kab
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.15 no.2
    • /
    • pp.189-194
    • /
    • 2015
  • In this study, the heat radiation performance of COB LED according to the structure of thermoelectric device were compared. Thermoelectric device of the sheet copper structure and ceramic structure were used for bonding with the heating part of the COB LED. The temperature distribution in the bonding part of the thermoelectric device of COB LED was measured with a contact-type thermometer. The temperature variation of the thermoelectric device was measured by inputting the currents of 0.1A, 0.3A, 0.5A, and 0.7A. When 0.7A was applied, the temperature of the bonding part where there was a heat aggregation phenomenon of the COB LED was $59^{\circ}C$ for thermoelectric device of the sheet copper structure and $67^{\circ}C$ for the thermoelectric device of the ceramic structure. Therefore, the sheet copper thermoelectric device whose temperature was lower by $9^{\circ}C$ showed better heat radiation performance than those of the ceramic structure.

Thermal Characteristics of the design on Residential 13.5W COB LED Down Light Heat Sink (주거용 13.5W COB LED 다운라이트 방열판 설계에 따른 열적 특성 분석)

  • Kwon, Jae-hyun;Lee, Jun-myung;Kim, Hyo-jun;Kang, Eun-young;Park, Keon-jun
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.7 no.1
    • /
    • pp.20-25
    • /
    • 2014
  • There are several severe problems for LED device, the next generation's economy green lighting: as the temperature increases, the lamp efficiency decreases; if the temperature is over $80^{\circ}C$, the lifetime of lighting decreases; Red Shift phenomenon that wavelength of spectrum line moves toward long wavelength occurs; and optical power decreases as $T_j$ increases. Thus, Heat sink design that can minimize the heat of LED device is currently in progress. While the thermal resistance of COB Type LED was reduced by direct coupling of LED chip to the board, residential 13.5W requires Heat sink in order resolve heat issue. This study designed Heat Sink suitable for residential 13.5W COB LED down-light and selected the optimum Fin thickness through flow simulation that packaged the designed Heat Sink and 13.5W COB. And finally it analyzed and evaluated the thermal modes using contacting thermometer.

A Study on the Thermal Characteristics of COB LED using Thermoelectric Element (열전소자를 이용한 COB LED의 열적 특성 분석에 관한 연구)

  • Kim, Hyo-Jun;Kim, Tae-Hyung;Kim, Yong-Kab;Hoang, Geun-Chang
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.9 no.12
    • /
    • pp.1435-1440
    • /
    • 2014
  • This paper was designed to analyze thermal properties using thermoelectric element for air-cooling heat dissipation of 13.2W-class COB LED. For comparative analysis with generally used air cooling methods, the heat sink was designed and produced, and this experiment was conducted to measure the temperature distribution using a contact thermometer while the COB LED was operating for 100 minutes. One result was about $75^{\circ}C$ for the general cooling method, and the other was $57^{\circ}C$ while the thermoelectric element was operating with applying the current of 0.8A to the thermoelectric element. This results confirmed that the method of applying thermoelectric element was much better in the dissipation of thermal condense on the COB LED than that of the general air cooling one. The temperature on the contact points of COB LED using thermoelectric element was decreased about 31% compared with the air cooling method from $75^{\circ}C$ to $57^{\circ}C$.

Thermal Characteristics of the Optimal Design on 15W COB LED Down Light Heat Sink (주거용 15W COB LED 다운라이트 방열판 최적설계에 따른 열적 특성 분석 및 평가)

  • Kwon, Jae-Hyun;Park, Keon-Jun;Kim, Tae-Hyung;Kim, Yong-Kab
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.18 no.2
    • /
    • pp.401-407
    • /
    • 2014
  • There are increasing interests in COB (Chip On Board) that densely arranged many LED chips on one board in order to solve the heat issue. There are many problems being on the rise: the lifespan decreases as the temperature of LED devices increases; Red Shift phenomenon, in which wave length of spectral line moves from original wave length to long wave length, occurs; and optical power decreases as $T_j$ increases. In order to resolve such problems, this study selected the optimum thickness and length of Fin, planned the second Heat sink that is optimum for COB LED with 15W, and analyzed thermal mode by Solid Works Flow Simulation through 15W COB packaging with the planned Heat sink. 15W COB down-light Heat sink that is produced based on this analysis was utilized to analyze thermal mode through contact thermometer and electrical properties through Kelthley 2430.

A Study on High Power LED Lamp Structures (COB LED 램프 패키징 방열 특성과 신뢰성에 관한 연구)

  • Hong, Dae-Woon;Lee, Song-Jae
    • Korean Journal of Optics and Photonics
    • /
    • v.21 no.3
    • /
    • pp.118-122
    • /
    • 2010
  • We fabricated a high power LED lamp structure which utilizes the modified COB concept based on an MCPCB with insulation layer partially removed. In the proposed structure, no insulation layer exists between the LED chip and the metal base. As a result, the heat generated in the chip is easily dissipated through the metal base. In actual measurement as well as in thermal simulation, the fabricated LED lamp structure showed superb thermal properties, compared to the SMD LED lamp attached on an MCPCB or the LED lamp based on conventional COB concept.

ED COB Package Using Aluminum Anodization (알루미늄 양극산화를 사용한 LED COB 패키지)

  • Kim, Moonjung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.10
    • /
    • pp.4757-4761
    • /
    • 2012
  • LED chip on board(COB) package has been fabricated using aluminum substrate and aluminum anodization process. An alumina layer, used as a dielectric in COB substrate, is produced on aluminum substrate by selective anodization process. Also, selective anodization process makes it possible to construct a thermal via with a fully-filled via hole. Two types of the COB package are fabricated in order to analyze the effects of their substrate types on thermal resistivity and luminous efficiency. The aluminum substrate with the thermal via shows more improved measurement results compared with the alumina substrate. These results demonstrate that selective anodization process and thermal via can increase heat dissipation of COB package in this work. In addition, it is proved experimentally that these parameters also can be enhanced using efficient layout of multiple chip in the COB package.

A Study on Improving the Efficiency of a Heat Dissipation Design for 30 W COB LED Light Source (30 W COB LED광원의 효율 개선을 위한 방열설계에 관한 연구)

  • Seo, BumSik;Lee, KiJoung;Cho, Young Seek;Park, Dae-Hee
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.26 no.2
    • /
    • pp.158-163
    • /
    • 2013
  • In this paper, thermal analysis of heatsink for 30 W class Chip-on-Board (COB) LED light source is performed by using SolidWorks Flow Simulation package. In order to increase the convection heat transfer, number of fin and shape of the heatsink is optimized. Furthermore, a copper spread is applied between the COB LED light source and the heatsink to mitigate the heat concentration on the heatsink. With the copper spread, the junction temperature between the COB LED light source and the heatsink is $50.9^{\circ}C$, which is $5.4^{\circ}C$ lower than the heatsink without the copper spread. Due to the improvement of the junction temperature, the light output is improved by 5.8% when the LED light source is stabilized. The temperature difference between the simulation and measured result of the heatsink with the copper spread is within $2^{\circ}C$, which verifies the validity of the thermal design method using a simulation package.

Thermal simulation using COB Type LED modules analysis of thermal characteristics (열 시뮬레이션을 이용한 COB Type LED 모듈 방열특성 분석)

  • Seo, Bum-Sik;Kim, Sung-Hyun;Jeong, Young-Gi;Park, Dae-Hee
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.1722-1723
    • /
    • 2011
  • LED는 광학적 특성을 유지하기 위해서는 방열설계가 매우 중요한 문제로 요구된다. 대부분의 반도체 소자의 고장 원인은 85%정도가 열로 인한 것이며 고출력 LED의 인가된 에너지는 20%정도가 광으로 출력되며 나머지 80%정도가 열로 전환된다. 이러한 이유 때문에 LED소자의 신뢰성과 효율 향상을 위한 방열성능의 극대화가 필요하다. 본 연구에서는 AI MCPCB 기판에 기반을 둔 COB Type의 고출력 LED모듈의 구조를 제안 하였으며, LED Chip과 금속base 사이의 절연층 유무의 관점에서의 비교 열 시뮬레이션을 통해 결과를 분석하여 고출력 COB LED모듈의 방열 특성을 최적화 하였다.

  • PDF