• Title/Summary/Keyword: COX-2

Search Result 2,691, Processing Time 0.053 seconds

Activation of p38 MAPK Is Involved in Endothelin-1-stimulated COX-2 Expression in Cultured Feline Esophageal Smooth Muscle Cells

  • Song, Hyun Ju;Min, Young Sil;Shin, Chang Yell;Jeong, Ji Hoon;Sohn, Uy Dong
    • Molecules and Cells
    • /
    • v.22 no.1
    • /
    • pp.44-50
    • /
    • 2006
  • We investigated the possible role of p38 MAPK and $ET_B$ receptors in ET-1 induction of cyclooxygenase-2 (COX-2) and prostaglandin $E_2$ ($PGE_2$) in cultured feline esophageal smooth muscle cells (ESMC). Confluent layers of ESMC were stimulated with 10 nM ET-1 and expression of COX-1 and COX-2, involvement of receptors, and activation of p38 MAPK, were examined by Western blot analysis. Levels of $PGE_2$ induced by ET-1 were measured by Elisa. Using $ET_A$and $ET_B$ antagonists (BQ-123 and BQ-788, respectively), the contribution of the ET receptors to COX-1 and COX-2 expression induced by ET-1 was determined. Western blot analysis revealed that treatment of ESMC with ET-1 resulted in transient expression of COX-2 and activation of p38 MAPK. Activation of p38 MAPK was maximal after 1 h. SB202190, a p38 MAPK inhibitor, reduced expression of COX-2, but not COX-1. ET-1-induced release of $PGE_2$ was also blocked by SB202190. COX-2 expression was upregulated only via the $ET_B$ receptor, and COX-1 expression was not affected by either antagonist. Taken together, our data suggest that ET-1 causes p38 MAPK-dependent expression of COX-2 by interacting with $ET_B$ receptors on ESMC.

Nitric Oxide Donor, NOR-3, Increased Expression of Cyclooxygenase-2, but not of Cyclooxygenase-1 in Cultured VSMC

  • Lee, Dong-Hyup;Park, Ji-Eun;Kang, Young-Jin;Lee, Kwang-Youn;Choi, Hyoung-Chul
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.10 no.3
    • /
    • pp.161-165
    • /
    • 2006
  • NO and cyclooxygenase-2 (COX-2) are contributes to vascular inflammation induced by various stimulation. The mechanism, which explains a linkage between NO and COX-2, could be of importance in promoting pathophysiological conditions of vessel. We investigated the effects of NO donors on the COX-l and COX-2 mRNA/protein expression, as well as the nitrite production in culture medium of vascular smooth muscle cell (VSMC). VSMC was primarily cultured from thoracic aorta of rat. In this experiments, COX-l and COX-2 mRNA/protein expressions were analysed and nitrite productions were investigated using Griess reagent. VSMC did not express COX-2 protein in basal condition (Nonlipopolysaccharide (LPS) stimulated). In LPS-stimulated experiments, after 3 hours of NO donor pretreatment, LPS $10{\mu}g/ml$ was treated for 24 hours. COX-l protein expressions were unchanged by SNP and NOR-3. NOR-3 significantly increased COX-2 mRNA/protein expression under LPS stimulation. In contrast, SNP did not increase COX-2 mRNA/protein expression under LPS stimulation. Nitrite production was higher in NOR-3 treatment than SNP treatment under LPS stimulation. These results suggest that the expression of COX-2 in VSMC is regulated by NOR-3, COX-2 expressions were depending on the types of NO donor and LPS stimulation in VSMC.

CJ-11668, A new selective and potent COX-2 inhibitor, reduces inflamation, fever and pain in animal models

  • Kim, Seong-Woo;Park, Hyun-Jung;Kim, Young-Gi;Yeon, Kyu-Jeong;Ryu, Hyung-Chul;Park, Sang-Wook;Kim, Jong-Hoon;Ko, Dong-Hyun;Chae, Myeong-Yun
    • Proceedings of the PSK Conference
    • /
    • 2003.10b
    • /
    • pp.94.2-94.2
    • /
    • 2003
  • CJ-11668 is a new potent and selective COX-2 inhibitor. CJ-11668 showed COX-2 inhibition (IC50) of 65nM and selectivity ratio (COX-l/COX-2) of 770 in the cell based assay. In the human whole blood assay, CJ-11668 showed COX-2 inhibition (IC50) of 370nM and selectivity ratio (COX-l/COX-2), 135. The treatment of CJ-11668 (5 mg/kg, p.o) produced a significant inhibition (35%) of inflamed rat paw volume in the carrageenan-induced acute inflammation. CJ-11668 also suppressed the PGE2 level (69% inhibition, 1 mg/kg, p.o) in the zymosan-induced mouse air pouch model after 3 hrs. (omitted)

  • PDF

COX-2 increase tumor-associated angiogenesis and tumor growth by eNOS-dependent pathway (eNOS 의존적 pathway를 통한 COX-2의 tumor 성장 증가와 tumor 혈관신생 증가)

  • Sohn, Eun-Hwa;Nam, Seung-Koong
    • Proceedings of the KAIS Fall Conference
    • /
    • 2011.05b
    • /
    • pp.1068-1071
    • /
    • 2011
  • Cyclooxygenases (COX)-2 has been highly expressed in a variety of tumor cells and involved inflammatory process, tumor-associated angiogenesis, and vascular functions but the underlying mechanism is not clearly elucidated. We here investigated the molecular mechanism by which COX-2 regulates tumor-associated angiogenesis. In vivo, we injected B16-F1 cells overexpressed with COX-2 or mock in wild type or eNOS-deficient mice. Tumor cells overexpressed with COX-2 increase tumor-associated angiogenesis and tumor growth compared with control cells and that the effect of COX-2 was lower in eNOS-deficient mice than wild type mice. These results may contribute to further understanding of the regulation of angiogenesis by COX during tumor metastasis and inflammation.

  • PDF

Effects of a Selective COX-2 Inhibitor Celecoxib and Soy-Isoflavones on Molecular Markers Related to Apoptosis, and COX-2 and Mapkinase Expression in Estrogen-Fed Rats

  • Kim, Tae-Kyung;Park, Ock Jin
    • Nutritional Sciences
    • /
    • v.8 no.1
    • /
    • pp.16-22
    • /
    • 2005
  • The present study examined the effects of cyclooxygenase-2 (COX-2) inhibitor celecoxib or soy-isoflavones in the presence of estrogen on apoptosis related gene expression, COX-2 and mapkinase in 48-week old female rats. Expressions of bel-2 and bax proteins, which are known to be involved in the regulation of apoptosis, were investigated in mammary glands and heart tissues. The elevated expression of bel-2 expression was observed in mammary glands of celecoxib supplemented rats as well as soy-isoflavones. The mammary glands bel-2/bax ratio was found to be higher in celecoxib or soy-isoflavones supplemented rats. However, in heart tissues, expression of bel-2 and bax was in the order of control, celecoxib and soy-isoflavones. The up-regulation of COX-2 was observed in celecoxib or soy-isoflavones in mammary glands. 'The similar trend was not displayed with the mapkinase expression. In heart tissues, the down-regulation of COX-2 as well as mapkinase was observed in celecoxib or soy-isoflavones supplemented rats. Soy-isoflavones and celecoxib both had a similar regulatory pattern of bel-2, bax and COX-2 in mammary glands, and in heart tissues, only COX-2 exhibited a similar down-regulatory properly. These findings revealed that in estrogen sufficient state, celecoxib and soy-isoflavones might not exhibit proapoptotic potential or COX-2 inhibition in normal mammary glands.

Targeting of COX-2 Expression by Recombinant Adenovirus shRNA Attenuates the Malignant Biological Behavior of Breast Cancer Cells

  • Tu, Bo;Ma, Ting-Ting;Peng, Xiao-Qiong;Wang, Qin;Yang, Hong;Huang, Xiao-Ling
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.20
    • /
    • pp.8829-8836
    • /
    • 2014
  • Background: Cyclooxygenase-2 (COX-2), considered to have tumor-promoting potential, is highly expressed in a variety of tumors, including breast cancer. Since the functions and action mechanisms of COX-2 in breast cancer have not been fully elucidated, in the present study, the effects of target inhibiting COX-2 with recombinant adenovirus Ad-COX-2-shRNA on malignant biological behavior were investigated in representative cell lines. Materials and Methods: Breast cancer MDA-MB-231 and MCF-7 cells were transfected with Ad-COX-2-shRNA and COX-2 expression was tested by RT-PCR and Western blotting. Changes in proliferation, apoptosis and invasion of breast cancer cells were detected with various assays including MTT, colony forming, flowcytometry and Transwell invasion tests. The expression of related proteins involved in the cell cycle, apoptosis, invasion and signaling pathways was assessed by Western blotting. Results: COX-2 expression was significantly reduced in both breast cancer cell lines infected with Ad-COX-2-shRNA, with obvious inhibition of proliferation, colony forming rate, G2/M phase passage and invasion, as well as induction of apoptosis, in MDA-MB-231 and MCF-7 cells, respectively. At the same time, proteins related to the cell cycle, anti-apoptosis and invasion were significantly downregulated. In addition, c-myc expression and phosphorylation activation of Wnt/${\beta}$-catenin and p38MAPK pathways were reduced by the Ad-COX-2-shRNA. Conclusions: COX-2 expression is associated with proliferation, apoptosis and invasion of breast cancer cells, and its mechanisms of action involve regulating expression of c-myc through the p38MAPK and Wnt/${\beta}$-catenin pathways.

Treatment with ultra-dilutions of Arnica montana increases COX-2 expression and PGE2 secretion in mouse chondrocytes (생쥐 연골세포에 Arnica montana 처리에 따른 COX-2 발현과 PGE2 분비 비교)

  • Kim, Yun Kyu;Yeo, Myeong Gu
    • Journal of the Korea Convergence Society
    • /
    • v.10 no.2
    • /
    • pp.331-337
    • /
    • 2019
  • Objective: We studied the effects of 4x, 30x, 30c, and 200c homeopathic dilutions of A. montana on inflammation in primary cultured mouse chondrocytes. Methods: Examined expression of Coll-2 and COX-2, and secretion of PGE2. Results: Treatment with 4x, 30x, and 30c A. montana decreased mRNA expression of Coll-2 and 30x A. montana increased mRNA expression of COX-2, while treatment with 30x and 30c A. montana increased protein expression of COX-2. Treatment with the 30c A. montana increased release of PGE2. Conclusion: Treatment with A. montana induces dedifferentiation and inflammatory responses, including increased COX-2 expression and PGE2 secretion.

Feedback Control of Cyclooxygenase-2 Expression by Prostaglandin E2 in Rheumatoid Synoviocytes

  • Min, So-Youn;Jung, Young Ok;Do, Ju-Ho;Kim, So-Yang;Kim, Jeong-Pyo;Cho, Chul-Soo;Kim, Wan-Uk
    • IMMUNE NETWORK
    • /
    • v.3 no.3
    • /
    • pp.201-210
    • /
    • 2003
  • Objective: The role of prostaglandin $E_2$ (PGE2) in the etiopathogenesis of immune and inflammatory diseases has become the subject of recent debate. To determine the role of PGE2 in rheumatoid arthritis (RA), we tested the effect of exogenous PGE2 on the production of cyclooxygenase-2 (COX-2) by rheumatoid synoviocytes. Methods: Fibroblast-like synoviocytes (FLS) were prepared from the synovial tissues of RA patients, and cultured in the presence of PGE2. The COX-2 mRNA and protein expression levels were determined by RT-PCR and Western blot analysis, respectively. The PGE2 receptor subtypes in the FLS were analyzed by RT-PCR. Electrophoretic mobility shift assay (EMSA) was used to measure the NF-${\kappa}B$ binding activity for COX-2 transcription. The in vivoeffect of PGE2 on the development of arthritis was also tested in collagen induced arthritis (CIA) animals. Results: PGE2 ($10^{-11}$ to $10^{-5}M$) dose-dependently inhibited the expression of COX-2 mRNA and the COX-2 protein stimulated with IL-$1{\beta}$, but not COX-1 mRNA. NS-398, a selective COX-2 inhibitor, displayed an additive effect on PGE2-induced COX-2 downregulation. The FLS predominantly expressed the PGE2 receptor (EP) 2 and EP4, which mediated the COX-2 suppression by PGE2. Treatment with anti-IL-10 monoclonal antibodies partially reversed the PGE2-induced suppression of COX-2 mRNA, suggesting that IL-10 may be involved in modulating COX-2 by PGE2. Experiments using an inducer and an inhibitor of cyclic AMP (cAMP) suggest that cAMP is the major intracellular signal that mediates the regulatory effect of PGE2 on COX-2 expression. EMSA revealed that PGE2 inhibited the binding of NF-${\kappa}B$ in the COX-2 promoter via a cAMP dependent pathway. In addition, a subcutaneous injection of PGE2 twice daily for 2 weeks significantly reduced the incidence and severity of CIA as well as the production of IgG antibodies to type II collagen. Conclusion: Our data suggest that overproduced PGE2 in the RA joints may function as an autocrine regulator of its own synthesis by inhibiting COX-2 production and may, in part, play an anti-inflammatory role in the arthritic joints.

GROWTH INHIBITION OF ORAL SQUAMOUS CELL CARCINORMA CELL LINE INDUCED BY COX INHIBITOR (COX 억제제에 의해 유도되는 구강편평세포암종 세포주의 성장 억제 효과)

  • Park, Gwang-Jin;Han, Se-Jin;Lee, Jae-Hoon
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.30 no.4
    • /
    • pp.333-344
    • /
    • 2008
  • The objectives of this study was to explore the growth pattern of the oral squamous cell carcinoma when overexpressed COX was inhibited, explore the pathway that COX inhibitors suppressed the proliferation of cancer cells, and then hereafter investigate the potential of COX as chemopreventive target for oral squamous cell carcinoma. For confirming the COX-dependent effect and mechanisms on growth of the oral cancer cells, we treated the nonselective NSAID, Mefenamic acid and COX-2 selective inhibitor, Celecoxib in HN4 cell line. And then the cell line was evaluated with MTT assay and growth curve, the production of PGE2, total RNA extraction and RT-PCR analysis, and TEM The results were obtained as follows: 1. After administration of medication, in the result of MTT assay, Celecoxib inoculated group inhibit the cell growth rather than Mefenamic acid inoculated group. 2. The growth curve of cell line showed as time passes by there was a dramatic cell growth in the control group, and gradual growth inhibition was found in medication inoculated group and, in Celecoxib inoculated group there was more inhibition of cell growth. 3. After the administration of medication, Celecoxib tend to inhibit the synthesis of PGE2 more than Mefenamic acid. Mefenamic acid inhibit the synthesis of PGE2 more as the concentration gets high, but Celecoxib inhibited the synthesis of PGE2 even in low concentration. 4. After the administration of medication, the revelation of COX mRNA in cell line, there was a 50% decrease in COX-1, 60% decrease in COX-2 as in $50{\mu}M$ Mefenamic acid, and in Celecoxib $50{\mu}M$ there was not much difference in COX-1 and 90% decrease in COX-2 was found. 5. HN4 cell line showed broken nucleus and tangled cytoskeleton bundles in cytoplasm which meant apoptotic features after the treatment of Celecoxib in TEM view. Depending on the above results, we estimate that the inhibition of the expression of COX-2 cause the growth suppression of the oral squamous cell carcinoma, and it get achieved through pathway of reduced PGE2 production and increased apoptosis. In addition to, because COX-2 selective inhibitor specifically act to COX-2, it is considered that COX-2 selective inhibitor has the adequate potential as chemopreventive agent for oral squamous cell carcinoma.

Phospholipase D isozymes mediate epigallocatechin gallate-induced cyclooxygenase-2 expression in astrocyte cells

  • Kim, Shi-Yeon;Min, Kyoung-Jin;Joe, Eun-Hye;Min, Do-Sik
    • Proceedings of the Korean Society of Plant Biotechnology Conference
    • /
    • 2004.10a
    • /
    • pp.74-79
    • /
    • 2004
  • Little is known about the effect of epigallocatechin-3 gallate (ESCG), a major constituent of green tea, on the expression of cyclooxygenase (COX)-2. Here, we studied the role of phospholipase D (PLD) isozymes in EGCG-induced COX-2 expression. Stimulation of human astrocytoma cells (U87) with EGCG induced formation of phosphatidylbutanol, a specific product of PLD activity, and synthesis of COX-2protein and its product, prostaglandin $E_2$ ($PGE_2$). Pretreatment of cells with 1-butanol, but not 3-butanol, suppressed EGCG-induced COX-2 expression and $PGE_2$ synthesis. Furthermore, evidence that PLD was involved in EGCG-induced COX-2 expression w3s provided by the observations that COX-2 expression was stimulated by over-expression of PLD1 or PLD2 isozymes and treatment with phosphatidic acid(PA), and that prevention of PA dephosphorylation by 1-propranolol significantly potentiated COX-2expression Induced by EGCG. EGCG induced activation of p38 mitogen-activated protein kinase (p38MAPK), and specific Inhibition of p38 MAPK dramatically abolished EGCG-Induced PLD activation, COX-2 expression, and $PGE_2$ formation. Moreover, protein kinase C (PKC) inhibition suppressed EGCG-induced p38 MAPK activation, COX-2 expression, and $PGE_2$ accumulation. The same pathways as those obtained in the astrocytoma cells were active in primary rat astrocytes, suggesting the relevance of the findings. Collectively, our results demonstrate for the first time that PLD isozymes mediate EGCG-induced COX-2 expression through PKC and p38 in immortalized astroglial line and normal astrocyte cells.

  • PDF