• 제목/요약/키워드: CR-DPF

검색결과 8건 처리시간 0.024초

CR-DPF를 장착한 대형디젤기관의 기관 및 배출가스성능에 관한 실험적 연구 (An Experimental Study on Performance and Exhaust Emission of a Heavy-Duty Engine with CR-DPF)

  • 김미수;오상기;한영출
    • 한국공작기계학회논문집
    • /
    • 제13권6호
    • /
    • pp.114-118
    • /
    • 2004
  • This research focused on the principle and the development of continuous regeneration DPF technology which was the best particulate matters removing technology of current existing technologies owing to its superior comparability and possible applicability. In addition, there were some discussions about the affecting engine parameters such as engine driving conditions and the amounts, velocity, temperature, pressure of exhaust emissions as well as sulfur contents and lubricants which were prerequisites to prevent poisoning effect on catalysts. The test was made on an 8000cc heavy-duty turbo diesel engine on which continuous regeneration DPF was in order to investigate regeneration characteristics of DPF and me performance under the condition of standard or 50ppm low sulphur diesel. Exhaust emissions, CO, HC, NOx PM were measured and compared under D-13 modes.

ULSD, CR-DPF와 EGR을 적용한 디젤기관의 배출가스에 관한 연구 (A Study on Exhaust Gas of Diesel Engine with a ULSD, CR-DPF and EGR)

  • 문병철;오용석
    • 한국공작기계학회논문집
    • /
    • 제15권5호
    • /
    • pp.85-90
    • /
    • 2006
  • Since air pollution has become a globally critical issue and exhaust emissions from automobiles cause a major source of air pollution, many countries including advanced countries have stipulated stringent emission regulations. This test was conducted on the effect of continuous regeneration diesel particulate filter and cooled-EGR, and 15ppm low sulfur diesel was used as a test fuel. Exhaust emissions, PM, NOx, CO, HC and Soots were measured and compared under D-13modes. Through durability test on diesel particulate filter, regeneration characteristics and control technology on PM were investigated in overall.

대형디젤기관에 있어서 연속재생방식 매연저감장치 성능 테스트 (The Performance Test on A Continuous Regeneration DPF in A HD Diesel Engine)

  • 백두성
    • 한국산학기술학회논문지
    • /
    • 제7권5호
    • /
    • pp.788-792
    • /
    • 2006
  • 본 논문은 터보가 장착된 8000cc 대형디젤엔진에 연속재생장식 매연저감장치를 장착함으로써 기관성능과 배기가스에 대한 영향을 알아보기 위하여 수행되었으며, 실험 조건은 황 함량이 430ppm 인 표준 디젤 연료와 황 함량이 50ppm인 저유황 연료의 조건 하에서 이루어졌다. CO, HC, NOx 및 PM은 D-13 모드에서 수행되었고 매연은 D-3 모드를 기준으로 배기가스 실험이 진행되었다.

  • PDF

Continuously Regenerating DPF장착에 따른 대형디젤기관의 기관성능 및 배출가스특성에 관한 연구 (A Study on Exhaust Emission and Engine Performance Characteristics of Heavy-Duty Diesel Engine with Continuously Regenerating DPF)

  • 나완용;오상기
    • 동력기계공학회지
    • /
    • 제10권2호
    • /
    • pp.11-15
    • /
    • 2006
  • The increasing numbers of automobiles keep causing air-pollution problems worse than ever. Nowadays, research on catalyst converter and filter trap as a modern technology is very active because PM is designated as a major cancer material and stringent regulations on this are necessary and required. This research emphasized on the development of Continuously Regenerating DPF technology which was the best particulate matters removing technology of current existing technology because of its superior comparability and high applicability. This experimental study has been conducted with equipped and unequipped a Continuously Regenerating DPF ona displacement 7,000cc diesel engine and compared in terms of engine performance and emission. To measure the emission, D-13 mode is applied and measured quantities of the exhaust gases, particularly in CO, HC, PM, and NOx. Therefore, this research is focused on engine performance and characteristics on exhaust emissions with the application of a Continuously Regenerating DPF in a heavy-duty diesel vehicle.

  • PDF

CR-DPF와 Cooled-EGR 적용한 디젤기관 성능해석 (A Performance Prediction of Diesel Engine with a CR-DPF and Cooled-EGR)

  • 문병철;오용석;박귀열;강금원;이태영
    • 한국공작기계학회논문집
    • /
    • 제14권6호
    • /
    • pp.95-100
    • /
    • 2005
  • Since air pollution has become a globally critical issue and exhaust emissions from automobiles cause a major source of air pollution, many countries including advanced countries have stipulated stringent emission regulations. This research focused on engine performance characteristics with the application of a continuous regeneration diesel particulate filter and EGR together in a heavy duty vehicle, and gives some suggestions on the direction of designing points of view by comparing the experimental data with numerical results which were obtained through KIVA-3V.

INJECTION STRATEGY OF DIESEL FUEL FOR AN ACTIVE REGENERATION DPF SYSTEM

  • Lee, C.H.;Oh, K.C.;Lee, C.B.;Kim, D.J.;Jo, J.D.;Cho, T.D.
    • International Journal of Automotive Technology
    • /
    • 제8권1호
    • /
    • pp.27-31
    • /
    • 2007
  • The number of vehicles employing diesel engines is rapidly rising. Accompanying this trend, application of an after-treatment system is strictly required as a result of reinforced exhaust regulations. The Diesel Particulate Filter (DPF) system is considered as the most efficient method to reduce particulate matter (PM), but the improvement of a regeneration performance at any engine operation point presents a considerable challenge by itself. Therefore, the present study evaluates the effect of fuel injection characteristics on regeneration performance in a DOC and a catalyzed CR-DPF system. The temperature distribution on the rear surface of the DOC and the exhaust gas emission were analyzed in accordance with fuel injection strategies and engine operating conditions. A temperature increase more than BPT of DPF system was obtained with a small amount fuel injection although the exhaust gas temperature was low and flow rate was high. This increase of temperature at the DPF inlet cause PM to oxidize completely by oxygen. In the case of multi-step injection, the abrupt temperature changes of DOC inlet didn't occur and THC slip also could not be observed. However, in the case of pulse type injection, the abrupt injection of much fuel results in the decrease of DOC inlet temperatures and the instantaneous slip of THC was observed.

CR-DPF와 Cooled-EGR 적용한 대형디젤기관 성능에 관한 연구 (A Study on Heavy-Duty Diesel Engine Performance with a CR-DPF and Cooled-EGR)

  • 문병철;오용석;오상기;강금원;안균재
    • 한국자동차공학회논문집
    • /
    • 제14권3호
    • /
    • pp.75-80
    • /
    • 2006
  • Since air pollution has become a globally critical issue and exhaust emissions from automobiles cause a major source of air pollution, many countries including advanced countries have stipulated stringent emission regulations. Particularly in diesel vehicles, NOx and particulate matters exhaust in significant amounts even though diesel vehicles provide merits in aspects of higher thermal efficiency and lower $CO_2$. To reduce Particulate matters and NOx, after-treatment technology such as filter trap, oxidation catalysts and EGR has been applied. This test was conducted on the effect of continuous regeneration diesel particulate filter and cooled-EGR, and 15ppm low sulfur diesel was used as a test fuel. Exhaust emissions, PM, NOx, CO, HC and Soots were measured and compared under D-13 and D-3 modes.

Fuel-Borne Catalyst와 Perovskite로 구성된 복합촉매 시스템에 의한 디젤 탄소입자상 물질의 연소반응: 반응성능과 Perovskite 촉매조성 (La1-x A'xBO3: A' = K, Sr; 0 ≤ x ≤ 1; B = Fe, Cr, Mn)의 상관관계 (Combustion of Diesel Particulate Matters under Mixed Catalyst System of Fuel-Borne Catalyst and Perovskite: Influence of Composition of Perovskite (La1-x A'xBO3: A' = K, Sr; 0 ≤ x ≤ 1; B = Fe, Cr, Mn) on Combustion Activity)

  • 이대원;성주영;이관영
    • Korean Chemical Engineering Research
    • /
    • 제56권2호
    • /
    • pp.281-290
    • /
    • 2018
  • 최근 선진국을 중심으로 고연비-저배출 내연기관 (디젤) 자동차 보급의 필요성이 대두되면서 기존 촉매후처리 장치의 저온성능 강화를 위한 기술적 방안들이 시급히 요구되고 있다. 본 논문에서는 디젤엔진 배출 탄소입자상 물질의 연소반응에 있어 연료함유 촉매(Fuel-Borne Catalyst)와 페로브스카이트(Perovskite)의 복합촉매 시스템이 보이는 상용모델촉매 대비 우수한 저온 연소성능과 이의 Perovskite 촉매 조성에 대한 의존성에 관해 논하였다. Fe/Ce 계열 연료함유 촉매가 A-site 원소(La)에 K이 부분치환되고, B-site 금속이 Fe인 Perovskite 촉매와 복합화될 때 상대적으로 우수한 저온 연소성능 개선효과가 관찰되었다. 이를 관찰하기 위해 연료함유 촉매가 함유되거나 함유하지 않은 탄소 입자상 물질과 다양한 조성의 La 계열 Perovskite 촉매를 혼합한 고정층에 대한 온도상승 산화반응 실험(Temperature-Programmed Oxidation)을 수행하였으며, 이산화탄소 생성과 질소산화물 농도 저하 패턴의 연동특성을 통해 두 촉매의 상호 연계작용을 유추하였다.