• Title/Summary/Keyword: CT number

Search Result 595, Processing Time 0.038 seconds

Evaluation of Usefulness of Iterative Metal Artifact Reduction(IMAR) Algorithm In Proton Therapy Planning (양성자 치료계획에서 Iterative Metal Artifact Reduction(IMAR) Algorithm 적용의 유용성 평가)

  • Han, Young Gil;Jang, Yo Jong;Kang, Dong Heok;Kim, Sun Young;Lee, Du Hyeon
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.29 no.1
    • /
    • pp.49-56
    • /
    • 2017
  • Purpose: To evaluate the accuracy of the Iterative Metal Artifact Reduction (IMAR) algorithm in correcting CT (computed tomography) images distorted due to a metal artifact and to evaluate the usefulness when proton therapy plan was plan using the images on which IMAR algorithm was applied. Materials and Methods: We used a CT simulator to capture the images when metal was not inserted in the CIRS model 062 Phantom and when metal was inserted in it and Artifact occurred. We compared the differences in the CT numbers from the images without metal, with a metal artifact, and with IMAR algorithm by setting ROI 1 and ROI 2 at the same position in the phantom. In addition, CT numbers of the tissue equivalents located near the metal were compared. For the evaluation of Rando Phantom, CT was taken by inserting a titanium rod into the spinal region of the Rando phantom modelling a patient who underwent spinal implant surgery. In addition, the same proton therapy plan was established for each image, and the differences in Range at three sites were compared. Results: In the evaluation of CIRS Phantom, the CT numbers were -6.5 HU at ROI 1 and -10.5 HU at ROI 2 in the absence of metal. In the presence of metal, Fe, Ti, and W were -148.1, -45.1 and -151.7 HU at ROI 1, respectively, and when the IMAR algorithm was applied, it increased to -0.9, -2.0, -1.9 HU. In the presence of metal, they were 171.8, 63.9 and 177.0 HU at ROI 2 and after the application of IMAR algorithm they decreased to 10.0 6,7 and 8.1 HU. The CT numbers of the tissue equivalents were corrected close to the original CT numbers except those in the lung located farthest. In the evaluation of the Rando Phantom, the mean CT numbers were 9.9, -202.8, and 35.1 HU at ROI 1, and 9.0, 107.1, and 29 HU at ROI 2 in the absence, presence of metal, and in the application of IMAR algorithm. The difference between the absence of metal and the range of proton beam in the therapy was reduced on the average by 0.26 cm at point 1, 0.20 cm at point 2, and 0.12 cm at point 3 when the IMAR algorithm was applied. Conclusion: By applying the IMAR algorithm, the CT numbers were corrected close to the original ones obtained in the absence of metal. In the beam profile of the proton therapy, the difference in Range after applying the IMAR algorithm was reduced by 0.01 to 3.6 mm. There were slight differences as compared to the images absence of metal but it was thought that the application of the IMAR algorithm could result in less error compared with the conventional therapy.

  • PDF

Adoption and Its Determining Factors of Computerized Tomography in Korea (우리 나라 전산화단층촬영기(CT)의 도입에 영향을 미치는 요인에 관한 연구)

  • Yoon, Seok-Jun;Kim, Sun-Mean;Kang, Chul-Hwan;Kim, Chang-Yup;Shin, Young-Soo
    • Journal of Preventive Medicine and Public Health
    • /
    • v.30 no.1 s.56
    • /
    • pp.195-207
    • /
    • 1997
  • High price equipment is one of the major factors that increases national health expenditure in developed countries. Computerized Tomography(CT), one of the important high price equipment, has been concerns of health service researchers and policy makers in many countries. In Korea, CT, first introduced in 1984, have spreaded nationwide with rapid speed. Though the Committee for Approving Import of High Price Medical Equipment, founded in 1981, tried to regulate the introduction of high price medical equipment including CT, the effort resulted in failure. The exact situation of diffusion of the high price equipment, however, was not yet investigated. We aimed at the description of the diffusion of CT in Korea and analysis of influencing factors on hospitals for the adoption of CT. We mainly used the database of CT, made in 1996 by the National Federation of Medical Insurance for the purpose of insurance payment for CT. Also characteristics of hospitals were gathered from yearbooks published by the central and local governments and by the Korean Hospital Association. We calculated the cumulative number of the CT per one million population year by year. In turn, multiple linear logistic regression was done to find out the contributing factors for the adoption of CT by each hospital. In the logistic regression model, it is regarded as dependent factor whether a hospital retained CT or not in 1988 and 1993. The major categories of the independent factors were hospital characteristics, environmental factors and competitive conditions of hospitals at the period of the adoption. The results are as follows: Number of CT scanners per one million persons in Korea marked more higher level compared with those of most OECD countries. Major influencing factors on the adoption of CT scanners were hospital characteristics, such as hospital referral level, and competitive condition of hospitals, such as number of CT scanners per 10,000 persons in each district where the hospital was located. In Korea, CT diffused with rather rapid speed, comparable with those of the United States and Japan. The major factors contributing on the adoption of CT for hospitals were competitive condition and hospital characteristics rather than regional health care need for CT. In conclusion, a kind of regulating mechanism would be necessary for the prevention of the indiscreet adoption and inefficient use of high price equipment including CT.

  • PDF

Development of Self-Diagnosis Linearity Quality Assurance Technique in Computed Tomography by Using Iodic Contrast Media (요오드 조영제를 이용한 전산화단층촬영장치의 자가진단 직선성 정도관리 기술 개발)

  • Seoung, Youl-Hun
    • The Journal of the Korea Contents Association
    • /
    • v.15 no.5
    • /
    • pp.436-443
    • /
    • 2015
  • The purpose of this study was to develop a self-diagnostic linearity quality control techniques of computed tomography (CT) by using measured CT number values from the various concentrations of iodine contrast media (CM) is diluted with distilled water under each condition of the tube voltage. The equipment was used for four-channel MDCT, the iodine concentration were using 300 mgI/ml, 350 mgI/ml, 370 mgI/ml and 400mgI/ml. Dilution of CM in distilled water was increased by each 5% until the maximum CT number values were measured. We applied the tube voltages for 90 kVp, 120 kVp, 140 kVp. As a result, we was obtained to the nearest linearity as 0.993 of correlation coefficient between the iodinated CM from 5% to 25% in 400 mgI/ml and the CT number values by 90 kVp. In conclusion, the proposed self-diagnostic linearity quality assurance technique by using iodine CM can be utilized to replace the AAPM CT performance phantom.

A Basic Study on Comparative Analysis with Bone using 3D Printer Filament Material (3D 프린터 필라멘트 재료를 이용한 뼈와의 비교분석에 관한 기초연구)

  • Kyung-Tae, Kwon;Hui-Min, Jang
    • Journal of the Korean Society of Radiology
    • /
    • v.16 no.7
    • /
    • pp.825-833
    • /
    • 2022
  • In 3D printing technology, materials that can be printed are increasing along with the development of material engineering, and materials that can be used in the field of radiation are also increasing. Therefore, depending on the composition and density of the materials used, the applied field can be different and applied, so the composition and characteristics of the materials must also be considered. In this study, 10 filaments with different properties were selected using a 3D printer of the FDM (Fused Deposition Modeling) method, and the brightness change of each filament was checked using a diagnostic X-ray generator, and the CT number was measured through CT. I wanted to find a material similar to bone. As a result, a material called silicon carbide was found, which has a similar brightness and CT number to bone. It is thought that further research will be presented as basic data for various studies with a density similar to that of human bones.

Evaluation of the reconstruction of image acquired from CT simulator to reduce metal artifact (Metal artifact 감소를 위한 CT simulator 영상 재구성의 유용성 평가)

  • Choi, Ji Hun;Park, Jin Hong;Choi, Byung Don;Won, Hui Su;Chang, Nam Jun;Goo, Jang Hyun;Hong, Joo Wan
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.26 no.2
    • /
    • pp.191-197
    • /
    • 2014
  • Purpose : This study presents the usefulness assessment of metal artifact reduction for orthopedic implants(O-MAR) to decrease metal artifacts from materials with high density when acquired CT images. Materials and Methods : By CT simulator, original CT images were acquired from Gammex and Rando phantom and those phantoms inserted with high density materials were scanned for other CT images with metal artifacts and then O-MAR was applied to those images, respectively. To evaluate CT images using Gammex phantom, 5 regions of interest(ROIs) were placed at 5 organs and 3 ROIs were set up at points affected by artifacts. The averages of standard deviation(SD) and CT numbers were compared with a plan using original image. For assessment of variations in dose of tissue around materials with high density, the volume of a cylindrical shape was designed at 3 places in images acquired from Rando phantom by Eclipse. With 6 MV, 7-fields, $15{\time}15cm2$ and 100 cGy per fraction, treatment planning was created and the mean dose were compared with a plan using original image. Results : In the test with the Gammex phantom, CT numbers had a few difference at established points and especially 3 points affected by artifacts had most of the same figures. In the case of O-MAR image, the more reduction in SD appeared at all of 8 points than non O-MAR image. In the test using the Rando Phantom, the variations in dose of tissue around high density materials had a few difference between original CT image and CT image with O-MAR. Conclusion : The CT images using O-MAR were acquired clearly at the boundary of tissue around high density materials and applying O-MAR was useful for correcting CT numbers.

A Study on the Status and Utilization of Computed Tomography Units in Pusan Area (전산화(電算化) 단층촬영기(斷層撮影機)의 보유현황(保有現況) 및 이용실태(利用實態) (부산시내(釜山市內) 병원(病院)을 중심(中心)으로))

  • Oh, Moon-Young
    • Journal of radiological science and technology
    • /
    • v.14 no.1
    • /
    • pp.29-44
    • /
    • 1991
  • A Study on the distribution and types of the total 40 CT units, as of 1st October 1990, in Pusan area(29 for whole body CT units, 11 for brain CT units) were carried out during the period from January 1989 to December 1989 to find out the status of operation and utilization of whole body CT units. The results were as following ; 1. As of 1st October 1990 in Pusan area, a total of 40 CT units(29 for whole body CT units, 11 for brain CT units) were set up and operated. The number of cases of CT examination performed per day per unit were appeared to be less than 5 cases among 59.5% of CT units, and 2.7% of the total units has peformed more than 16 examinations. 2. The CT units under operation occupied 93.5% of the total and 2.6% of the total units was not properly been operated due to mechanical breakdown. This results is appeared to be better than other reports. 3. The average number of scanning per week for each CT were 35 cases and the average days under operation of the unit per week were 6.7 days. Consequently, the average days under operation of units was higher than that of the other reports, but the average number of scanning was lower. 4. The cases referred from other institutes to hospitals were 6.4% of total cases. 5. As a site of scanning, the brain appeared most frequently with 71.2% of the total cases and followed by spine 12.4%, abdomen 8.5%, and thorax 3.6%, respectively. 6. Positive rate by scanning was 70.8% of total cases, and it was 98.9% with thorax, abdomen 96.3%, spine 93.1%, and brain 38.4%, respectively. According to the results of this study, it is highly recommended that the regulations and the guidelines for setting-up of such high cost medical equipments as CT units be provided in order to ensure the cost-effectiveness of the system.

  • PDF

A Comparative Study on the Lens Dose According to the Change of Shielding Material Used in Brain Computed Tomography (Brain CT에서 차폐 재료 변화에 따른 수정체 선량 비교 연구)

  • Hwang, Incheol;Shin, Woonjae;Gang, Eunbo
    • Journal of the Korean Society of Radiology
    • /
    • v.9 no.1
    • /
    • pp.31-37
    • /
    • 2015
  • The cases of radiographic inspection for medical diagnosis in Korea have been continuously increasing year after year, which pays particularly more attention to CT which occupies over the half of medical radiation exposure. To find an effective alternative for reducing radiation exposure, the researchers conducted comparative experiments using some shields made of bismuth, aluminum 6mm, and silicone 22mm. These shielding materials have been used to reduce the entrance surface dose (ESD) on lenses, maintaining the CT number, noise, and uniformity in brain CT scanning which forms the largest part in CT scanning these days. These experiments showed that the doses in the spiral scan parallel to IOML and the conventional scan in Bismuth were 26.41% and 17.52%, respectively; in Aluminum 18.24% and 9.39%; in Silicone 19.47% and 14.39% lower than compared with those in the cases without any shields. In the items of the CT number, noise, and uniformity, the bismuth shield satisfied exceedingly the standards of the phantom image test while aluminum and silicone were within. To keep the graphic quality and get good shielding effect, we recommend the silicone shield which can be manufactured and purchased with ease.

Comparison of CT numbers between cone-beam CT and multi-detector CT (Cone-beam CT와 multi-detector CT영상에서 측정된 CT number에 대한 비교연구)

  • Kim, Dong-Soo;Han, Won-Jeong;Kim, Eun-Kyung
    • Imaging Science in Dentistry
    • /
    • v.40 no.2
    • /
    • pp.63-68
    • /
    • 2010
  • Purpose : To compare the CT numbers on 3 cone-beam CT (CBCT) images with those on multi-detector CT (MDCT) image using CT phantom and to develop linear regressive equations using CT numbers to material density for all the CT scanner each. Materials and Methods : Mini CT phantom comprised of five 1 inch thick cylindrical models with 1.125 inches diameter of materials with different densities (polyethylene, polystyrene, plastic water, nylon and acrylic) was used. It was scanned in 3 CBCTs (i-CAT, Alphard VEGA, Implagraphy SC) and 1 MDCT (Somatom Emotion). The images were saved as DICOM format and CT numbers were measured using OnDemand 3D. CT numbers obtained from CBCTs and MDCT images were compared and linear regression analysis was performed for the density, $\rho$ ($g/cm^3$), as the dependent variable in terms of the CT numbers obtained from CBCTs and MDCT images. Results : CT numbers on i-CAT and Implagraphy CBCT images were smaller than those on Somatom Emotion MDCT image (p<0.05). Linear relationship on a range of materials used for this study were $\rho$=0.001H+1.07 with $R^2$ value of 0.999 for Somatom Emotion, $\rho$=0.002H+1.09 with $R^2$ value of 0.991 for Alphard VEGA, $\rho$=0.001H+1.43 with $R^2$ value of 0.980 for i-CAT and $\rho$=0.001H+1.30 with $R^2$ value of 0.975 for Implagraphy. Conclusion: CT numbers on i-CAT and Implagraphy CBCT images were not same as those on Somatom Emotion MDCT image. The linear regressive equations to determine the density from the CT numbers with very high correlation coefficient were obtained on three CBCT and MDCT scan.

Performance measurements of Positron Emission Tomographs using NEMA NU 2-2007 (NU 2-2007을 이용한 PET/CT 성능평가)

  • An, Hye-Sun;Park, Hoon-Heu;Jin, Gye-Hwan
    • Journal of the Korean Society of Radiology
    • /
    • v.3 no.3
    • /
    • pp.13-21
    • /
    • 2009
  • PET/CT is a machine for imaging in vivo functions or metabolic activities after the administration of radiopharmaceuticals labeled with radioisotope emitting positrons in the body. Recently the number of PET/CT installed in Korean medical institutions is increasing rapidly. In response, the number of PET/CT tests to be used in the diagnosis and treatment of tumors is also increasing every year, and this is increasing the necessity for developing the methods of PET/CT performance evaluation and quality control. Among the test items for the performance evaluation and quality control of PET/CT suggested in NU 2-2007, this study examined spatial resolution test, sensitivity test, image quality, attenuation accuracy & scatter correction test, scatter fraction, count losses and randoms test and accuracy( correction for count losses and randoms).

  • PDF

Evaluation of Corrected Dose with Inhomogeneous Tissue by using CT Image (CT 영상을 이용한 불균질 조직의 선량보정 평가)

  • Kim, Gha-Jung
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.18 no.2
    • /
    • pp.75-80
    • /
    • 2006
  • Purpose: In radiation therapy, precise calculation of dose toward malignant tumors or normal tissue would be a critical factor in determining whether the treatment would be successful. The Radiation Treatment Planning (RTP) system is one of most effective methods to make it effective to the correction of dose due to CT number through converting linear attenuation coefficient to density of the inhomogeneous tissue by means of CT based reconstruction. Materials and Methods: In this study, we carried out the measurement of CT number and calculation of mass density by using RTP system and the homemade inhomogeneous tissue Phantom and the values were obtained with reference to water. Moreover, we intended to investigate the effectiveness and accuracy for the correction of inhomogeneous tissue by the CT number through comparing the measured dose (nC) and calculated dose (Percentage Depth Dose, PDD) used CT image during radiation exposure with RTP. Results: The difference in mass density between the calculated tissue equivalent material and the true value was ranged from $0.005g/cm^3\;to\;0.069g/cm^3$. A relative error between PDD of RTP and calculated dose obtained by radiation therapy of machine ranged from -2.8 to +1.06%(effective range within 3%). Conclusion: In conclusion, we confirmed the effectiveness of correction for the inhomogeneous tissues through CT images. These results would be one of good information on the basic outline of Quality Assurance (QA) in RTP system.

  • PDF