• Title/Summary/Keyword: CYP model

Search Result 79, Processing Time 0.03 seconds

A Comparative Analysis of Surplus Production Models and a Maximum Entropy Model for Estimating the Anchovy's Stock in Korea (우리나라 멸치자원량추정을 위한 잉여생산모델과 최대엔트로피모델의 비교분석)

  • Pyo, Hee-Dong
    • Journal of Fisheries and Marine Sciences Education
    • /
    • v.18 no.1
    • /
    • pp.19-30
    • /
    • 2006
  • For fishery stock assessment and optimum sustainable yield of anchovy in Korea, surplus production(SP) models and a maximum entropy(ME) model are employed in this paper. For determining appropriate models, five traditional SP models-Schaefer model, Schnute model, Walters and Hilborn model, Fox model, and Clarke, Yoshimoto and Pooley (CYP) model- are tested for effort and catch data of anchovy that occupies 7% in the total fisheries landings of Korea. Only CYP model of five SP models fits statistically significant at the 10% level. Estimated intrinsic growth rates are similar in both CYP and ME models, while environmental carrying capacity of the ME model is quite greater than that of the CYP model. In addition, the estimated maximum sustainable yield(MSY), 213,287 tons in the ME model is slightly higher than that of CYP model (198,364 tons). Biomass for MSY in the ME model, however, is calculated 651,000 tons which is considerably greater than that of the CYP model (322,881 tons). It is meaningful in that two models are compared for noting some implications about any significant difference of stock assessment and their potential strength and weakness.

Population Pharmacokinetics of Midazolam in Healthy Koreans: Effect of Cytochrome P450 3A-mediated Drug-drug Interaction (건강한 한국인에서 미다졸람 집단약동학 분석: CYP3A 매개 약물상호작용 평가)

  • Shin, Kwang-Hee
    • Korean Journal of Clinical Pharmacy
    • /
    • v.26 no.4
    • /
    • pp.312-317
    • /
    • 2016
  • Objective: Midazolam is mainly metabolized by cytochrome P450 (CYP) 3A. Inhibition or induction of CYP3A can affect the pharmacological activity of midazolam. The aims of this study were to develop a population pharmacokinetic (PK) model and evaluate the effect of CYP3A-mediated interactions among ketoconazole, rifampicin, and midazolam. Methods: Three-treatment, three-period, crossover study was conducted in 24 healthy male subjects. Each subject received 1 mg midazolam (control), 1 mg midazolam after pretreatment with 400 mg ketoconazole once daily for 4 days (CYP3A inhibition phase), and 2.5 mg midazolam after pretreatment with 600 mg rifampicin once daily for 10 days (CYP3A induction phase). The population PK analysis was performed using a nonlinear mixed effect model ($NONMEM^{(R)}$ 7.2) based on plasma midazolam concentrations. The PK model was developed, and the first-order conditional estimation with interaction was applied for the model run. A three-compartment model with first-order elimination described the PK. The influence of ketoconazole and rifampicin, CYP3A5 genotype, and demographic characteristics on PK parameters was examined. Goodness-of-fit (GOF) diagnostics and visual predictive checks, as well as bootstrap were used to evaluate the adequacy of the model fit and predictions. Results: Twenty-four subjects contributed to 900 midazolam concentrations. The final parameter estimates (% relative standard error, RSE) were as follows; clearance (CL), 31.8 L/h (6.0%); inter-compartmental clearance (Q) 2, 36.4 L/h (9.7%); Q3, 7.37 L/h (12.0%), volume of distribution (V) 1, 70.7 L (3.6%), V2, 32.9 L (8.8%); and V3, 44.4 L (6.7%). The midazolam CL decreased and increased to 32.5 and 199.9% in the inhibition and induction phases, respectively, compared to that in control phase. Conclusion: A PK model for midazolam co-treatment with ketoconazole and rifampicin was developed using data of healthy volunteers, and the subject's CYP3A status influenced the midazolam PK parameters. Therefore, a population PK model with enzyme-mediated drug interactions may be useful for quantitatively predicting PK alterations.

Homology Modeling and In Vitro Analysis for Characterization of Streptomyces peucetius CYP157C4

  • Rimal, Hemraj;Yu, Sang-Cheol;Jang, Jong Hwa;Oh, Tae-Jin
    • Journal of Microbiology and Biotechnology
    • /
    • v.25 no.9
    • /
    • pp.1417-1424
    • /
    • 2015
  • In this study, we tried to characterize Streptomyces peucetius CYP157C4 with homology modeling using three cytochrome P450 (CYP) structures (CYP157C1, CYP164A2, and CYP107L1), having discovered that CYP157C4 lacks the ExxR motif that was considered invariant in all CYPs. We used Discovery Studio 3.5 to build our model after first assessing the stereochemical quality and side-chain environment, and a 7-ethoxycoumarin substrate was docked into the final model. The model-substrate complex allowed us to identify functionally important residues and validate the active-site architecture. We found a distance of 4.56 Å between the 7-ethoxycoumarin and the active site of the heme, and cloning and an in vitro assay of the CYP157C4 showed the dealkylation of the substrate. Since the details regarding this group of CYP structures are still unknown, the findings of this study may provide elucidation to assist with future efforts to find a legitimate substrate.

Four Polymorphisms in the Cytochrome P450 1A2 (CYP1A2) Gene and Lung Cancer Risk: a Meta-analysis

  • Bu, Zhi-Bin;Ye, Meng;Cheng, Yun;Wu, Wan-Zhen
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.14
    • /
    • pp.5673-5679
    • /
    • 2014
  • Background: Previous published data on the association between CYP1A2 rs762551, rs2069514, rs2069526, and rs2470890 polymorphisms and lung cancer risk have not allowed a definite conclusion. The present meta-analysis of the literature was performed to derive a more precise estimation of the relationship. Materials and Methods: 8 publications covering 23 studies were selected for this meta-analysis, including 1,665 cases and 2,383 controls for CYP1A2 rs762551 (from 8 studies), 1,456 cases and 1,792 controls for CYP1A2 rs2069514 (from 7 studies), 657 cases and 984 controls for CYP1A2 rs2069526 (from 5 studies) and 691 cases and 968 controls for CYP1A2 rs2470890 (from 3 studies). Results: When all the eligible studies were pooled into the meta-analysis for the CYP1A2 rs762551 polymorphism, significantly increased lung cancer risk was observed in the dominant model (OR=1.21, 95 % CI=1.00-1.46). In the subgroup analysis by ethnicity, significantly increased risk of lung cancer was observed in Caucasians (dominant model: OR=1.29, 95%CI=1.11-1.51; recessive model: OR=1.33, 95%CI=1.01-1.75; additive model: OR=1.49, 95%CI=1.12-1.98). There was no evidence of significant association between lung cancer risk and CYP1A2 rs2069514, s2470890, and rs2069526 polymorphisms. Conclusions: In summary, this meta-analysis indicates that the CYP1A2 rs762551 polymorphism is linked to an increased lung cancer risk in Caucasians. Moreover, our work also points out the importance of new studies for rs2069514 associations in lung cancer, where at least some of the covariates responsible for heterogeneity could be controlled, to obtain a more conclusive understanding about the function of the rs2069514 polymorphism in lung cancer development.

Lack of Association Between the CYP1A1 Ile462Val Polymorphism and Endometrial Cancer Risk: a Meta-analysis

  • Wang, Xi-Wen;Zhong, Tian-Yu;Xiong, Yun-Hui;Lin, Hai-Bo;Liu, Qing-Yi
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.8
    • /
    • pp.3717-3721
    • /
    • 2012
  • Purpose: Any association between the CYP1A1 Ile462Val polymorphism and endometrial cancer risk remains inconclusive. For a more precise estimate, we performed the present meta-analysis. Methods: PUBMED, OVID and EMBASE were searched for the studies which met inclusion criteria. Data in all eligible studies were evaluated and extracted by two authors independently. The meta-analysis estimated pooled odds ratio (OR) with 95% confidence interval (CI) for endometrial cancer risk attributable to the CYP1A1 Ile462Val polymorphism. Results: A total of 7 studies were included in this meta-analysis. The results indicated no association between endometrial cancer risk and the CYP1A1 Ile462Val polymorphism (for Val vs Ile allele model [OR 1.09, 95% CI 0.73-1.62]; for Val.Val vs Ile.Ile genotype model [OR 1.54, 95% CI 0.56-4.23]; for (Ile.Val + Val.Val) vs Ile.Ile genotpye model [OR 1.08, 95% CI 0.71-1.63]; for Val.Val vs (Ile.Ile + Ile.Val) genotype model [OR 1.46, 95% CI 0.53-4.04]). Conclusions: This meta-analysis suggests that there is no association between endometrial cancer risk and the CYP1A1 Ile462Val polymorphism.

Association of CYP2C19 Polymorphisms with Survival of Breast Cancer Patients Using Tamoxifen: Results of a Meta-analysis

  • Bai, Lan;He, Juan;He, Gong-Hao;He, Jian-Chang;Xu, Fan;Xu, Gui-Li
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.19
    • /
    • pp.8331-8335
    • /
    • 2014
  • Background: Previous studies accessing the association of CYP2C19 with outcomes of patients using tamoxifen for breast cancer have yielded conflicting results. The aim of this meta-analysis is to obtain a more precise estimate of effects of CYP2C19 polymorphisms and to clarify their effects on survival of the breast cancer patients using tamoxifen. Materials and Methods: A systematic search of PubMed and Embase was performed, comparing patients with or without $CYP2C19^*2$ and $CYP2C19^*17$, relevant articles searched for. The following outcomes were included from the eligible studies: disease-free survival (DFS) and overall survival (OS), expressed by hazard ratios (HR) with corresponding 95% confidence interval (CI). Subgroup analysis by genotypes was also performed. Pooled estimates were calculated using random-effect model in accordance to the heterogeneity. Results: Six studies met the inclusion criteria. The integrated OR on the association between CYP2C19 and DFS, calculated by the random-effect model, was 0.54 (95%CI=0.34-0.84, p=0.013). Subgroup analysis showed that both $CYP2C19^*2$ and $CYP2C19^*17$ were associated with increased survival. The pooled results of two studies for OS were OR=0.46 (95%CI=0.21-1.01, p=0.233). Conclusions: This meta-analysis suggests that the $CYP2C19^*2$ and $CYP2C19^*17$ genotypes are associated with increased survival in breast cancer patients using tamoxifen.

Association Study between Genetic Polymorphisms of CYP2C19 Gene and Essential Hypertension in Koreans (한국인에서 CYP2C19 유전자 다형성과 본태성 고혈압 간의 연관성 연구)

  • Park, Ah-Ram;Shin, Eun-Soon;Son, Nak-Hoon;Jang, Yang-Soo;Shin, Dong-Jik
    • Journal of Life Science
    • /
    • v.20 no.5
    • /
    • pp.799-804
    • /
    • 2010
  • In humans, CYP2C19, a member of the cytochrome P450 subfamily, metabolizes arachidonic acid to produce epoxyicosanoid acids, which are involved in vascular tone and regulation of blood pressure (BP). Recent findings suggest that CYP2C19 gene polymorphisms might be considered as a novel candidate gene for cardiovascular disease. We thus focused on the Korean population to explore the association of two polymorphisms ($CYP2C19^*2$ and $^*3$) in this gene and essential hypertension (EH). A total of 1,241 participants (537 hypertensive subjects and 704 healthy controls) were recruited from the Yonsei Cardiovascular Genome Center in Korea. The CYP2C19 polymorphisms were genotyped using the $SNaPShot^{TM}$ assay. The allele and genotype frequencies of $CYP2C19^*3$ showed significant difference between hypertensives and normotensives (P=0.019 and P=0.023, respectively). Logistic regression analysis indicated that the $CYP2C19^*3$ A allele carriers were significantly associated with EH (OR, 0.723; 95% CI, 0.538-0.972, P=0.032) under a dominant model. In addition, CYP2C19 G-A haplotype ($2C19^*2\;G-^*3$ A combination) was found to significantly reduce EH risk (OR, 0.714, P=0.015). We believe this provides evidence that $CYP2C19^*3$ polymorphism may contribute to a protective effect in the development of EH.

Cytochrome P450 monooxygenase analysis in free-living and symbiotic microalgae Coccomyxa sp. C-169 and Chlorella sp. NC64A

  • Mthakathi, Ntsane Trevor;Kgosiemang, Ipeleng Kopano Rosinah;Chen, Wanping;Mohlatsane, Molikeng Eric;Mojahi, Thebeyapelo Jacob;Yu, Jae-Hyuk;Mashele, Samson Sitheni;Syed, Khajamohiddin
    • ALGAE
    • /
    • v.30 no.3
    • /
    • pp.233-239
    • /
    • 2015
  • Microalgae research is gaining momentum because of their potential biotechnological applications, including the generation of biofuels. Genome sequencing analysis of two model microalgal species, polar free-living Coccomyxa sp. C-169 and symbiotic Chlorella sp. NC64A, revealed insights into the factors responsible for their lifestyle and unravelled biotechnologically valuable proteins. However, genome sequence analysis under-explored cytochrome P450 monooxygenases (P450s), heme-thiolate proteins ubiquitously present in species belonging to different biological kingdoms. In this study we performed genome data-mining, annotation and comparative analysis of P450s in these two model algal species. Sixty-nine P450s were found in two algal species. Coccomyxa sp. showed 40 P450s and Chlorella sp. showed 29 P450s in their genome. Sixty-eight P450s (>100 amino acid in length) were grouped into 32 P450 families and 46 P450 subfamilies. Among the P450 families, 27 P450 families were novel and not found in other biological kingdoms. The new P450 families are CYP745-CYP747, CYP845-CYP863, and CYP904-CYP908. Five P450 families, CYP51, CYP97, CYP710, CYP745, and CYP746, were commonly found between two algal species and 16 and 11 P450 families were unique to Coccomyxa sp. and Chlorella sp. Synteny analysis and gene-structure analysis revealed P450 duplications in both species. Functional analysis based on homolog P450s suggested that CYP51 and CYP710 family members are involved in membrane ergosterol biosynthesis. CYP55 and CYP97 family members are involved in nitric oxide reduction and biosynthesis of carotenoids. This is the first report on comparative analysis of P450s in the microalgal species Coccomyxa sp. C-169 and Chlorella sp. NC64A.

Association between the CYP1A2 rs762551 Polymorphism and Bladder Cancer Susceptibility: a Meta-Analysis Based on Case-Control Studies

  • Zeng, Yong;Jiang, Hua-Yong;Wei, Li;Xu, Wei-Dong;Wang, Ya-Jie;Wang, Ya-Di;Liu, Chuan
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.16
    • /
    • pp.7249-7254
    • /
    • 2015
  • Background: Previous studies evaluated associations between the CYP1A2 rs762551 polymorphism and bladder cancer risk. However, the results were inconsistent. We therefore performed a meta-analysis of the published case-control studies to assess in detail the association between CYP1A2 rs762551 polymorphism and bladder cancer risk. Materials and Methods: PubMed, Embase and Web of Science were searched to identify relevant studies and the pooled odds ratio (OR) and 95 % confidence interval (95%CI) were calculated. Results: A total of seven articles including 3,013 cases and 2,771 controls were finally included. Overall, a significant association was found between the CYP1A2 rs762551 polymorphism and bladder cancer susceptibility for CC vs AA (OR=0.82, 95% CI=0.69~0.99), but no significant associations were found for the other three models (AC vs AA: OR=0.91, 95% CI=0.81~1.02; the dominant model: OR=0.90, 95% CI=0.80~1.00; the recessive model: OR=0.84, 95% CI =0.72~1.00). In the subgroup analysis by ethnicity, we detected significant associations between the CYP1A2 rs762551 polymorphism and bladder cancer susceptibility for GA vs GG (OR = 0.78, 95% CI =0.64~0.96) and for the recessive model (OR=0.80, 95% CI=0.66~0.96) in Caucasians, but not for Asians. Conclusions: The results from the meta-analysis suggested that the CYP1A2 rs762551 polymorphism is a protective factor for bladder cancer, especially in Caucasians.

Contributions of CYP2C9/CYP2C19 Genotypes and Drug Interaction to the Phenytoin Treatment in the Korean Epileptic Patients in the Clinical Setting

  • Lee, Soo-Youn;Lee, Seung-Tae;Kim, Jong-Won
    • BMB Reports
    • /
    • v.40 no.3
    • /
    • pp.448-452
    • /
    • 2007
  • We examined the contribution of CYP2C9 and CYP2C19 genotypes and drug interactions to the phenytoin metabolism among 97 Korean epileptic patients to determine if pharmacogenetic testing could be utilized in routine clinical practice. The CYP2C9 polymorphism is a wellknown major genetic factor responsible for phenytoin metabolism. The CYP219 polymorphism, with a high incidence of variant alleles, has a minor influence on phenytoin treated Koran patients. Using a multiple regression model for evaluation of the CYP2C9 and CYP2C19 genotypes, together with other non-genetic variables, we explained 39.6% of the variance in serum phenytoin levels. Incorporation of genotyping for CYP2C9 and CYP2C19 into a clinical practice may be of some help in the determination of phenytoin dosage. However, because concurrent drug treatment is common in patients taking phenytoin and many environmental factors are likely to play a role in drug metabolism, these factors may overwhelm the relevance of CYP polymorphisms in the clinical setting. Further investigations with an approach to dose assessment that includes comprehensive interpretation of both pharmacogenetic and pharmacokinetic data along with understanding of the mechanism of drug interactions in dosage adjustment is warranted.