• Title/Summary/Keyword: CaCO%24_3%24

Search Result 226, Processing Time 0.026 seconds

Analysis of carbonation characteristics on waste concrete (폐콘크리트의 탄산화 특성 분석)

  • Kim, Nam Il;Lee, Jong Tae;Chu, Yong Sik
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.32 no.4
    • /
    • pp.151-158
    • /
    • 2022
  • In this study, the waste concrete sample obtained as various particle size (0~2.36 mm) was carried out the basic measurements and carbonation for analyzing the possibility of its carbonation. It was then investigated some analysis such as crystallization (XRD pattern), microstructure (SEM), and the production of CaCO3 through the ignition loss (TG-DTA). The content of CaCO3 in the waste concrete sample before carbonation was found in 14.51 % and 28.52 % after carbonation in 24 hours. Moreover, the content of CaCO3 carbonated in 24 hours with fine grinded waste concrete sample was 32.73 %. The carbonation of the waste concrete sample was rapidly performed up to 6 hours, but gradually increased from 12 to 24 hours. Especially, the amount of CaCO3 between 12 and 24 hours was only produced 2.32 %. The calcite-shaped CaCO3 crystals after carbonation of the waste concrete sample were found in microstructure and their peaks were strongly detected on XRD pattern.

Quality Changes of 'Yeobong' Strawberry with CA Storage Conditions (CA저장조건에 따른 '여봉' 딸기의 품질변화)

  • Kim, Ji-Gang;Hong, Seong-Sik;Jeong, Seok-Tae;Kim, Young-Bae;Jang, Hyun-Sae
    • Korean Journal of Food Science and Technology
    • /
    • v.30 no.4
    • /
    • pp.871-876
    • /
    • 1998
  • 'Yeobong' strawberries were stored at $2^{\circ}C$ under controlled atmosphere (CA) containing the combinations of $O_2{\;}(3.8%)$ and $CO_2{\;}(10,{\;}15,{\;}20%)$ and air as control. Atmospheres of $3%{\;}O_2+15%{\;}CO_2$ and $8%{\;}O_2+15%{\;}CO_2$ reduced respiration and ethylene production rates. Fruits kept under CA conditions of 10% and 15% $CO_2$ were harder than those stored under 20% $CO_2$ and air. The CA conditions of 10% or 15% $CO_2$ maintained approximately 80% of vitamin C for 24 days. Redness were increased and then decreased, but the changing trends were not clear among the storage conditions. Anthocyanin contents in $3%{\;}O_2+15%{\;}CO_2$ and $8%{\;}O_2+15%{\;}CO_2$ were slightly increased for 16 days and then decreased thereafter, while anthocyanin content in air was rapidly increased for 8 days. After 16 days of storage, off-flavor were perceived in all CA storage. And strawberries stored in 20% $CO_2$ conditions were unacceptable after 20 days. The 20% $CO_2$ significantly affected off-flavor of strawberries, but there was no significant difference between 10% $CO_2$ and 15% $CO_2$ conditions. Ethanol which is in relation to off-flavor was higher with elevated $CO_2$ levels. Although CA conditions under $3%{\;}O_2+15%{\;}CO_2$ was effective in delaying the quality changes, there was high ethanol content compared to $8%{\;}O_2+15%{\;}CO_2$ condition. Strawberry kept under $8%{\;}O_2+15%{\;}CO_2$ was maintained the shelf-life for 24 days and the condition prolonged more $4{\sim}8$ days and 12 days than the other CA conditions and air, resectively.

  • PDF

Fundamental Characteristics of CO2-cured Mortar with Varied Rates of Blast Furnace Slag Fine Powder Substitution (고로슬래그 미분말 치환율에 따른 이산화탄소 양생 모르타르의 기초 물성)

  • Ryu, Ji-Su;Jang, Kyung-Su;Na, Hyeong-Won;Hyung, Won-Gil
    • Journal of the Korea Institute of Building Construction
    • /
    • v.24 no.1
    • /
    • pp.11-21
    • /
    • 2024
  • This research elucidates the fundamental properties of carbon dioxide (CO2)-cured mortar as influenced by varying substitution rates of blast furnace slag fine powder. The findings indicate that CO2 curing enhances the formation of calcium carbonate (CaCO3), contributing to pore reduction and the early development of strength. While calcium hydroxide (Ca(OH)2) plays a more pivotal role in the primary development of strength compared to CaCO3, an increase in the substitution rate of blast furnace slag fine powder results in reduced production of Ca(OH)2. Nonetheless, the maintenance of strength through CaCO3 formation is observed even after the depletion of Ca(OH)2, suggesting that the required performance can be sustained post-exposure to the atmosphere following CO2 curing. It is noted that substitution rates exceeding 50% lead to performance deterioration due to CO2, highlighting the necessity for careful adjustment of the substitution ratio.

Piezoelectric Characteristics of Low temperature Sintering Pb0.76Ca0.24[(Mn1/3Sb2/3)0.04Ti0.96]O3 Ceramics With the Variation of Poling Field (저온소결 Pb0.76Ca0.24[(Mn1/3Sb2/3)0.04Ti0.96]O3 세라믹스의 분극전계에 따른 압전특성)

  • Chung Kwang-Hyun;Yoo Kyung-Jin;Yoo Ju-Hyun;Cho Bong-Hee;Yoon Hyun-Sang;Paik Dong-Soo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.19 no.3
    • /
    • pp.228-232
    • /
    • 2006
  • In this paper, in order to develop low temperature sintering $PbTiO_3$-system piezoelectric ceramics for thickness-vibration-mode piezoelectric transformer, $Pb_{0.76}Ca_{0.24}[(Mn_{1/3}Sb_{2/3})_{0.04}Ti_{0.96}]O_3$ ceramics using $0.25\;wt\%\;CaCO_3$ and $0.2\;wt\%\;Li_{2}CO_3$ as sintering aids were manufactured according to the variation of poling field. The specimens could be sintered at $930\;^{\circ}C$. The piezoelectric properties were investigated according to the poling field. The maximum properties showed at the field of 6.5 kV/mm, which had kt of 0.49, Qmt of 1816, and $d_{33}$ of 81.4 pC/N.

Piezoelectric Characteristics of Low temperature sintering $Pb_{0.76}Ca_{0.24}[(Mn_{1/3}Sb_{2/3})_{0.04}Ti_{0.96}]O_3$ Ceramics with the variation of Poling field (저온소결 $Pb_{0.76}Ca_{0.24}[(Mn_{1/3}Sb_{2/3})_{0.04}Ti_{0.96}]O_3$ 세라믹스의 분극전계에 따른 압전특성)

  • Chung, Kwang-Hyun;Yoo, Kyung-Jin;Lee, Sang-Ho;Lee, Chang-Bae;Yoo, Ju-Hyun;Jeong, Yeong-Ho;Lee, Duck-Chool
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.176-177
    • /
    • 2005
  • In this paper, in order to develop low temperature sintering $PbTiO_3$-system piezoelectric ceramics for thickness-vibration-mode piezoelectric transformer, $Pb_{0.76}Ca_{0.24}[(Mn_{1/3}Sb_{2/3})_{0.04}Ti_{0.96}]O_3$ ceramics using $0.25wt%CaCO_3$ and 0.2wt%$Li_2CO_3$ as sintering aids were manufactured according to the variation of poling field. Specimens could be sintered at the sintering temperature of $930^{\circ}C$. The piezoelectric properties increased according to the increase of poling field and showed the maximum values (kt=0.49, Qmt=1816, and $d_{33}$=81.4pC/N) under 6.5kV/mm.

  • PDF

Adsorption of Mn on iron minerals and calcium compounds to reduce Mn(II) toxicity (2가 망간의 독성 저감을 위해 철산화물과 칼슘화합물을 이용한 망간 흡착)

  • Hyo Kyung Jee;Jin Hee Park
    • Journal of Applied Biological Chemistry
    • /
    • v.65 no.4
    • /
    • pp.457-462
    • /
    • 2022
  • Manganese (Mn) exists in various oxidation states and Mn(II) is the most mobile species of Mn, which is toxic to plants and limits their growth. Therefore, the purpose of this study was to reduce Mn toxicity by immobilizing Mn using various adsorbents including iron oxides and calcium compounds. Ferrihydrite, schwertmannite, goethite were synthesized, which was confirmed by X-ray diffraction. Hematite was purchased and used as Mn adsorbent. Calcium compounds such as CaNO3, CaSO4, and CaCO3 were used to increase pH and oxidize Mn. For Mn adsorption, Mn(II) solution was reacted with four iron oxides, CaNO3, CaSO4, and CaCO3 for 24 hours, filtered, and the remaining Mn concentrations in the solution were analyzed by inductively coupled plasma optical emission spectroscopy. The adsorption rate and adsorption isotherm were calculated. Among iron oxides, the adsorption rate was highest for hematite followed by ferrihyrite, but goethite and schwertmannite did not adsorb Mn. In the case of calcium compounds, the adsorption rate was high in the order of CaCO3>CaNO3>CaSO4. In conclusion, treatment of CaCO3 was the most effective in reducing Mn toxicity by increasing pH.

Nitrogen Dissolution in CaO-SiO2-Al2O3-MgO-CaF2 Slags (CaO-SiO2-Al2O3-MgO-CaF2 슬래그의 질소용해도에 관한 연구)

  • Baek, Seoung Bae;Lim, Jong Ho;Jung, Woo Jin;Lee, Seoung Won
    • Korean Journal of Materials Research
    • /
    • v.24 no.2
    • /
    • pp.81-86
    • /
    • 2014
  • The nitrogen solubility and nitride capacity of $CaO-SiO_2-Al_2O_3-MgO-CaF_2$ slag systems were measured by using gas-liquid equilibration at 1773K. The nitrogen solubility of this slag system decreased with increasing CO partial pressure, with the linear relationship between nitrogen contents and oxygen partial pressure being -3/4. This system was expected to show two types of nitride solution behavior. First, the nitrogen solubility decreased to a minimum value and then increased with the increase of CaO contents. These mechanisms were explained by considering that nitrogen can dissolve into slags as "free nitride" at high basicities and as "incorporated nitride" within the network at low basicities. Also, the basicity of slag and nitride capacity were explained by using optical basicity. The nitrogen contents exhibited temperature dependence, showing an increase in nitrogen contents with increasing temperature.

Cholecalciferol Metabolism Metabolic Conversion and Mode of Action (Cholecalciferol 대사연구(代謝硏究)에 관(關)한 일정리(一整理))

  • Yoon, Jin-Sook
    • Journal of Nutrition and Health
    • /
    • v.12 no.1
    • /
    • pp.9-16
    • /
    • 1979
  • Cholecalciferol은 피하에서 자외선과 체온의 작용을 받아 7-dehydrocholesterol로부터 Previtamin D를 거쳐 합성이 되며 이어서 간에 빨리 축적, 25 hydroxylation을 거치게 되고 신장에서 가장 활성을 띤 형태인 $1.25-(OH)_{2}CC$로 변하게 된다. 한편 신장에서는 체내의 Ca, P이 정상으로 존재하게 되면 1-hydroxylation이 억제되는 대신 24-hydroxylation이 일어나 또 다른 active form인 $24,\;25-(OH)_{2}CC$가 되는데 24-hydroxylation의 역활이 무엇인가에 대해서는 아직 구체적으로 밝혀지지 않았다. $24,\;25-(OH)_{2}CC$$1.25-(OH)_{2}CC$는 모두 공통적으로 또 다른 active form인 $1.24,\;25-(OH)_{3}CC$를 형성할 수도 있다. 그중 $1.25-(OH)_{2}CC$는 Steroid H.으로 일컬어지기도 하는 Vit. D metabolite중에서 가장 활성을 가진 형태이며 표적기관으로 크게 소장, 뼈, 신장을 들 수 있다. 소장에서의 역활은 무엇보다도 Ca흡수에 관련되는 것으로 소장에서의 Ca흡수와 Ca BP합성에 관여한다. 골격 형성과 뼈의 mineralization에 관여하는 Vit. D metabolite를의 효과에 관해서는 아직까지 일관성있는 보고가 없다. 한편 $1.25-(OH)_{2}CC$는 side chain oxidation을 거쳐 $CO_{2}$와 미지의 물질을 생성하는데 이 mechanism이 어떤 의미를 갖는지는 분명치 않다. 그밖에 또 다른 표적기관으로서 최근 타액선의 존재가 알려졌으며 Vit. D가 배설되는 경로에 대해서는 새로운 바가 없다. Vit. D가 담즙을 통해서 우선적으로 배설되고 소량이 뇨를 통해 배설되는데 metabolite들의 배설경로는 더욱 규명되어야 할 과제이다.

  • PDF

Characteristics of soybean urease induced CaCO3 precipitation

  • Zhu, Liping;Lang, Chaopeng;Li, Bingyan;Wen, Kejun;Li, Mingdong
    • Geomechanics and Engineering
    • /
    • v.31 no.3
    • /
    • pp.281-289
    • /
    • 2022
  • Bio-CaCO3 is a blowout environment-friendly materials for soil improvement and sealing of rock fissures. To evaluate the chemical characteristics, shape, size and productivity of soybean urease induced CaCO3 precipitates (SUICP), experimental studies were conducted via EDS, XRD, FT-IR, TGA, BET, and SEM. Also, the conversion rate of SUICP reaction at different time were determined and analyzed. The Bio-CaCO3 product obtained by SUICP is comprehensively judged as calcite based on the results of EDS, XRD and FT-IR. The SUICP calcite precipitates are detected as spherical or ellipsoidal particles 3-6 ㎛ in diameter with nanoscale pores on their surface, and this morphology is novel. The median secondary particle size d50 is 39-88 ㎛, indicating the agglomeration of the primary calcite particles. The Bio-calcite decomposes at 650-780℃, representing a medium thermal stability. The conversion rate of SUICP reaction can reach 80% in 24h, which is much more efficient than microbially induced CaCO3 precipitation. These results reveal the knowledges of SUICP, and further direct its engineering applications. Moreover, we show an economic channel to obtain porous spherical calcite.

Evaluating the Effectiveness of In-Situ Carbonation in Floor Dry Cement Mortar Applications (바닥용 건조시멘트 모르타르 배합 내 In-situ 탄산화 적용을 위한 CO2 주입 특성 및 물리적 특성 검토)

  • Kim, Jin-Sung;Cho, Sung-Hyun;Kim, Chun-Sik
    • Journal of the Korea Institute of Building Construction
    • /
    • v.24 no.1
    • /
    • pp.1-10
    • /
    • 2024
  • In-situ carbonation technology represents a form of mineral carbonation that integrates CO2 into the fabrication process of cementitious construction materials, capturing CO2 as calcium carbonate(CaCO3) through a reaction between calcium ions(Ca2+) and CO2 released during cement hydration. This investigation examines the application of in-situ carbonation technology to a variety of floor dry cement mortar formulations commonly used in local construction projects. It assesses the effects of varying the CO2 injection flow rate and total volume of CO2 injected. Additionally, the study evaluates the impact of reducing the quantity of cement used as a binder on the final product's quality.