• Title/Summary/Keyword: Cab noise

Search Result 16, Processing Time 0.023 seconds

A Case Study on Inside Noise Reduction of Agricultural Tractor Cab(II) -Noise Reduction- (농용 트랙터의 안전캡 내부 소음 감소에 관한 연구(II) -소음 감소 효과-)

  • 유동호;김경욱;최창현
    • Journal of Biosystems Engineering
    • /
    • v.20 no.2
    • /
    • pp.127-132
    • /
    • 1995
  • In the first part of this paper, an analysis of the cab noise of a selected agricultural tractor was presented. In this study, using the results of the previous analysis, two passive noise control measures of the sound insulation and absorption were conducted to reduce the noise level inside the cab. These measures of noise control reduced the total noise level by 6.2㏈(A) at the operator position inside the cab. In order to further reduce the cab noise, particularly, of lower frequencies than 630Hz, stiffness and damping of the floor panel should be enforced. It was also suggested that a proper suspension for the cab mounting is necessary to reduce the level of structure-born noises.

  • PDF

A Case Study on Inside Noise Reduction of Agricultural Tractor Cab(I) -Analysis of Sound and Sound Intensity Levels- (농용 트랙터의 안전캡 내부 소음 감소에 관한 연구( I ) -소음과 음향 강도 수준 분석-)

  • 유동호;김경욱;김재열
    • Journal of Biosystems Engineering
    • /
    • v.20 no.2
    • /
    • pp.117-126
    • /
    • 1995
  • High level of tractor noise may reduce operator's work performance and cause a hearing problem. This study was carried out to investigate the cab noise of a selected agricultural tractor. The noise was measured and analyzed in terms of sound and sound intensity levels. Form the results it was known that a structure-born noise was induced from the feet-rest and rear floor panel of the cab. The air-borne noise caused mainly by the engine was transmitted into the operator's position through the small openings of cab structures in the operator's lower front area.

  • PDF

Evaluation of Environmental Comfort of Tractor Cabs (트랙터 안전캡의 환경 쾌적성 평가)

  • Hwang, Ki-Young;Kim, Kyeong-Uk
    • Journal of Biosystems Engineering
    • /
    • v.34 no.1
    • /
    • pp.1-7
    • /
    • 2009
  • In order to evaluate environmental comfort of tractor cabs, temperature, relative humidity and noise within the cab were taken from 31 tractors during plowing and rotovating operations. The temperature and humidity were evaluated with regard to the comfort zone of KS B ISO 14269-2 and PMV of ISO 7730. The noise was evaluated with regard to the permissible sound level of OSHA for daily exposure of 8 hours. The collected data indicated that thermal environment of the cabs was out of the comfort zone, which meant tractor operators worked under uncomfortable thermal conditions. Difference in the thermal comfort by tractor power and maker, and type of works was not found. However, 25% of the studied tractors showed PMV in a range of -0.5 to +0.5, which indicated their operators worked under the comfort criteria. PMV was improved when the cab was air-conditioned. Levels of measured cab noise were lower than the permissible criteria, and 76.7% of the studied tractors had cab noise ranged from 75 to 85 dBA. There was a tendency that high powered tractors, rotovating operations and locally-made tractors had greater cab noise levels. However, their differences were insignificant.

Vibration Excitation Mechanism of Commercial Vehicle Driveline (사용차 구동축의 진동발생 메카니즘의 규명)

  • Park, B.Y.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.12 no.12
    • /
    • pp.109-119
    • /
    • 1995
  • A driveline incorporating universal joints when driving through an angle can excite various components in a vehicle with second order excitation of torsional and bending vibrations, being transmitted either audibly(noise), or physically(vibration). For a certain range of vehicle dpeed noises can be radiated from the cab wall, in which resonances occur by the excitations transmitted from the driveline as a vibration source. In this paper, the excitation mechanism of cab noises is studied especially for the vehicle speed range of 65 .approx. 75 km/h through the simulation for torsional vibrations of the driveline and for bending vibrations of the cab of an 11 Ton grade Cargo Truck, and verified additionally by vibration and noise measurements. As a result, it is found that the uncomfortable noises in the cab are caused mainly by the abrupt increase of the joint angle of driveline near the axle differential resulted from the excessive clearance alignment of the leaf spring gate.

  • PDF

A study of commercial vehicle cab vibration on the driving conditions (상용 차량의 주행 중 발생하는 캡의 진동에 관한 연구)

  • Choi, Byungjae;Han, In-kyu;Cho, Jeong-wook
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2014.10a
    • /
    • pp.472-475
    • /
    • 2014
  • Abnormal cab vibrations in the Y direction in commercial vehicles during driving(70~90kph) are not common vibrations that happen to vehicles during driving and can be an obstacle to normal driving. This study conducted Operation Deflection Shape(ODS) testing to identify the causes of those abnormal cab vibrations and find solutions for them and also a sine sweep test to find resonance and frequency in the cab suspension system and set directions for improvement. The study also altered the shape of the bush inner part for changes to the rigidity features of the cab bush in the Y direction and revised the design with optimal rigidity in the Y direction, thus improving abnormal cab vibrations in the Y direction during driving.

  • PDF

Noise Reduction study in the Tractor Cab (트랙터 차실의 소음 저감에 관한 연구)

  • Chun, Du-Hwan
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.06a
    • /
    • pp.1461-1466
    • /
    • 2000
  • This paper investigates the noise reduction scheme in tractor cabin by using various steps of experiment. The experiments were performed in the field as well as in the lab to facilitate the detail test procedure. Some of the test results were compared with computational results. Several noise sources and paths were identified including the engine compartment (cooling fan and timing gear cover), hydraulic system and its components (hoses, tubes and there mount) and structural characteristics of the cab, window, mounting bracket and machine frame including steps. Throughout the several design changes, cab noise level was reduced from 80.2dBA to 74.8dBA.

  • PDF

The Study on the Analysis of the Acoustic Transfer Function for Reducing the Structure-borne Noise (고체전달음 저감을 위한 음향전달 특성해석에 관한 연구)

  • Kim, K.M.
    • Journal of Power System Engineering
    • /
    • v.6 no.3
    • /
    • pp.57-63
    • /
    • 2002
  • This paper describes the acoustic analysis of mid duty truck. The focus of the analysis is on structure borne engine noise with major contributions of 2nd order. It has been previously recognized that the noise contribution of each transfer path of structure borne noise can be varied with the charateristics of each mounts and vibro acoustic sensitivity of car body. The structure of car body will be split up into three major sub components, which are modeled separately, the engine, the frame and the cab. The acoustic performance is evaluated on three levels: engine to frame transfer, frame to cab transfer, and panel contribution from cab to driver. In order to perform these analyses, analytical models are created for the engine, frame, cab and acoustic cavity. The models are linked through a coupled fluid structure calculation, and through FRF Based Substructuring for the structural couplings. Based on the structural coupling calculations, a transfer path analysis is performed to identify the most important transfer paths. These paths are then the focussing points for applying modifications to the structure or the mount system. Finally, a number of modification are proposed and their effect is quantified.

  • PDF

Development of Viscous Cabin Mount for Excavator (액체봉입형 Viscous 굴삭기 Cabin Mount 개발)

  • 김원영;전범석;박외경;강하근
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.339-344
    • /
    • 1997
  • Samsung Ltd. has developed a new-type cab mount for specific use on construct ion machinery subjected to strong vibration and multi-directional impact force. These all make it possible to achieve an excellent damping effect over a wide frequency range against large amplitude vibration as well as excellent insulation against small-amplitude vibration. This new mount make lower vibration and noise levels while increasing riding comfort at the same time. Characteristics of Cab mount were optimized through computer simulation, advanced bench testing, ODS testing, and a real equipment offroad testing.

  • PDF

Design Sensitivity Studies for Statistical Energy Analysis Modeling of Construction Vehicle Cab (통계적 에너지 해석 모델을 이용한 건설 장비 차실 설계에 관한 연구)

  • 채장범
    • Journal of KSNVE
    • /
    • v.8 no.4
    • /
    • pp.609-615
    • /
    • 1998
  • In recent years there has been an increasing emphasis on shortening design cycles for bringing products to market. This requires the development of computer aided engineering tools which allow analysts to quickly evaluate the effect of design changes on noise, vibration, and harshness. Statistical Energy Analysis (SEA) modeling is a valuable tool for predicting noise and vibration as SEA models are inherently simpler and more robust than deterministic models. SEA modeling can be combined with design sensitivity analysis(DSA) to identify design changes which give the largest performance benefit. This paper describes SEA modeling of an equipment cab. SEA predictions are compared to test data, showing good agreement. The use of design sensitivity analysis in improving cab design is then demonstrated.

  • PDF

Design Sensitivity Studies for Statistical Energy Analysis Modeling of Construction Vehicles (통계적 에너지 해석 모델을 이용한 건설 장비 설계에 관한 연구)

  • ;Manning, Jerome E.;Tracey, Brian H.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.385-390
    • /
    • 1997
  • In recent years there has been an increasing emphasis on shortening design cycles for bringing products to market. This requires the development of computer aided engineering tools which allow analysts to quickly evaluate the effect of design changes on noise, vibration, and harshness. Statistical Energy Analysis (SEA) modeling is a valuable tool for predicting noise and vibration as SEA models are inherently simpler and more robust than deterministic models. SEA modeling can be combined with design sensitivity analysis (DSA) to identify design changes which give the largest performance benefit. This paper describes SEA modeling of an equipment cab. SEA predictions are compared to test data, showing good agreement. The use of design sensitivity analysis in improving cab design is then demonstrated.

  • PDF