• Title/Summary/Keyword: Cable Damper

Search Result 94, Processing Time 0.027 seconds

Cable vibration control with a semiactive MR damper-numerical simulation and experimental verification

  • Wu, W.J.;Cai, C.S.
    • Structural Engineering and Mechanics
    • /
    • v.34 no.5
    • /
    • pp.611-623
    • /
    • 2010
  • Excessive stay cable vibrations can cause severe problems for cable-stayed bridges. In this paper a semiactive Magnetorheological (MR) damper is investigated to reduce cable vibrations. The control-oriented cable-damper model is first established; a computer simulation for the cable-damper system is carried out; and finally a MR damper is experimentally used to reduce the cable vibration in a laboratory environment using a semiactive control algorithm. Both the simulation and experimental results show that the semiactive MR damper achieves better control results than the corresponding passive damper.

Full-scale experimental verification on the vibration control of stay cable using optimally tuned MR damper

  • Huang, Hongwei;Liu, Jiangyun;Sun, Limin
    • Smart Structures and Systems
    • /
    • v.16 no.6
    • /
    • pp.1003-1021
    • /
    • 2015
  • MR dampers have been proposed for the control of cable vibration of cable-stayed bridge in recent years due to their high performance and low energy consumption. However, the highly nonlinear feature of MR dampers makes them difficult to be designed with efficient semi-active control algorithms. Simulation study has previously been carried out on the cable-MR damper system using a semi-active control algorithm derived based on the universal design curve of dampers and a bilinear mechanical model of the MR damper. This paper aims to verify the effectiveness of the MR damper for mitigating cable vibration through a full-scale experimental test, using the same semi-active control strategy as in the simulation study. A long stay cable fabricated for a real bridge was set-up with the MR damper installed. The cable was excited under both free and forced vibrations. Different test scenarios were considered where the MR damper was tuned as passive damper with minimum or maximum input current, or the input current of the damper was changed according to the proposed semi-active control algorithm. The effectiveness of the MR damper for controlling the cable vibration was assessed through computing the damping ratio of the cable for free vibration and the root mean square value of acceleration of the cable for forced vibration.

Development of Cable Damper System and Its Verification Test (사장교 케이블 댐퍼시스템 개발과 검증실험)

  • Seo, Ju-Won;Kim, Nam-Sik;Suh, Jeong-Gin;Jeong, Woon
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2001.04a
    • /
    • pp.394-402
    • /
    • 2001
  • In order to lessen cable vibration, new cable damper system with high damping rubber was developed using the basis of the LRB design scheme. The analysis model of cable damper system incorporate voigt-kelvin damper model into the nonlinear cable analysis model. To achieve maximum damping capacity both reducing damper stiffness and developing high damping rubber were performed. As a result of verification test, the high damping rubber damper show its effectiveness in improving cable damping capacity.

  • PDF

Vibration mitigation of stay cable using optimally tuned MR damper

  • Huang, Hongwei;Sun, Limin;Jiang, Xiaolu
    • Smart Structures and Systems
    • /
    • v.9 no.1
    • /
    • pp.35-53
    • /
    • 2012
  • Mechanical dampers have been proved to be one of the most effective countermeasures for vibration mitigation of stay cables in various cable-stayed bridges over the world. However, for long stay cables, as the installation height of the damper is restricted due to the aesthetic concern, using passive dampers alone may not satisfy the control requirement of the stay cables. In this connection, semi-active MR dampers have been proposed for the vibration mitigation of long stay cables. Although various studies have been carried out on the implementation of MR dampers on stay cables, the optimal damping performance of the cable-MR damper system has yet to be evaluated. Therefore, this paper aims to investigate the effectiveness of MR damper as a semi-active control device for the vibration mitigation of stay cable. The mathematical model of the MR damper will first be established through a performance test. Then, an efficient semi-active control strategy will be derived, where the damping of MR damper will be tuned according to the dynamic characteristics of stay cable, in order to achieve optimal damping of cable-damper system. Simulation study will be carried out to verify the proposed semi-active control algorithm for suppressing the cable vibrations induced by different loading patterns using optimally tuned MR damper. Finally, the effectiveness of MR damper in mitigating multi modes of cable vibration will be examined theoretically.

Cable vibration control with internal and external dampers: Theoretical analysis and field test validation

  • Di, Fangdian;Sun, Limin;Chen, Lin
    • Smart Structures and Systems
    • /
    • v.26 no.5
    • /
    • pp.575-589
    • /
    • 2020
  • For vibration control of stay cables in cable-stayed bridges, viscous dampers are frequently used, and they are regularly installed between the cable and the bridge deck. In practice, neoprene rubber bushings (or of other types) are also widely installed inside the cable guide pipe, mainly for reducing the bending stresses of the cable near its anchorages. Therefore, it is important to understand the effect of the bushings on the performance of the external damper. Besides, for long cables, external dampers installed at a single position near a cable end can no longer provide enough damping due to the sag effect and the limited installation distance. It is thus of interest to improve cable damping by additionally installing dampers inside the guide pipe. This paper hence studies the combined effects of an external damper and an internal damper (which can also model the bushings) on a stay cable. The internal damper is assumed to be a High Damping Rubber (HDR) damper, and the external damper is considered to be a viscous damper with intrinsic stiffness, and the cable sag is also considered. Both the cases when the two dampers are installed close to one cable end and respectively close to the two cable ends are studied. Asymptotic design formulas are derived for both cases considering that the dampers are close to the cable ends. It is shown that when the two dampers are placed close to different cable ends, their combined damping effects are approximately the sum of their separate contributions, regardless of small cable sag and damper intrinsic stiffness. When the two dampers are installed close to the same end, maximum damping that can be achieved by the external damper is generally degraded, regardless of properties of the HDR damper. Field tests on an existing cable-stayed bridge have further validated the influence of the internal damper on the performance of the external damper. The results suggest that the HDR is optimally placed in the guide pipe of the cable-pylon anchorage when installing viscous dampers at one position is insufficient. When an HDR damper or the bushing has to be installed near the external damper, their combined damping effects need to be evaluated using the presented methods.

Study of the non-linearity of cable damper to enhance damping performance of stay cable (사장교 케이블의 감쇠성능 향상을 위한 댐퍼의 비선형성 연구)

  • Seo, Ju-Won;Koh, Hyun-Moo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.05a
    • /
    • pp.147-156
    • /
    • 2007
  • This study offers a design procedure of optimum cable damper for multi-mode vibration control with nonlinear damper and also investigate the relation between mode and amplitude dependency. The proposed multi-mode damping index, which is defined as a energy loss ratio of cable potential, is a main component of optimization problem of optimum nonlinear damper. In order to include the amplitude dependency of nonlinear damper, it is assumed to exist three kinds of multi-mode patterns such as ambient vibration, support excitation and rain-win induced vibration. The optimum damper exponent depends on amplitude patterns. In case of ambient vibration, optimum factor is less than 0.5. In case of support excitation or rain-wind induced vibration is between 0.5 and 1.0. In this study, the effects of cable sag and inclination angle are included in the asymptotic design equation of damped cable structures.

  • PDF

Cable with discrete negative stiffness device and viscous damper: passive realization and general characteristics

  • Chen, Lin;Sun, Limin;Nagarajaiah, Satish
    • Smart Structures and Systems
    • /
    • v.15 no.3
    • /
    • pp.627-643
    • /
    • 2015
  • Negative stiffness, previously emulated by active or semi-active control for cable vibration mitigation, is realized passively using a self-contained highly compressed spring, the negative stiffness device (NSD).The NSD installed in parallel with a viscous damper (VD) in the vicinity of cable anchorage, enables increment of damper deformation during cable vibrations and hence increases the attainable cable damping. Considering the small cable displacement at the damper location, even with the weakening device, the force provided by the NSD-VD assembly is approximately linear. Complex frequency analysis has thus been conducted to evaluate the damping effect of the assembly on the cable; the displacement-dependent negative stiffness is further accounted by numerical analysis, validating the accuracy of the linear approximation for practical ranges of cable and NSD configurations. The NSD is confirmed to be a practical and cost-effective solution to improve the modal damping of a cable provided by an external damper, especially for super-long cables where the damper location is particularly limited. Moreover, mathematically, a linear negative stiffness and viscous damping assembly has proven capability to represent active or semi-active control for simplified cable vibration analysis as reported in the literature, while in these studies only the assembly located near cable anchorage has been addressed. It is of considerable interest to understand the general characteristics of a cable with the assembly relieving the location restriction, since it is quite practical to have an active controller installed at arbitrary location along the cable span such as by hanging an active tuned mass damper. In this paper the cable frequency variations and damping evolutions with respect to the arbitrary assembly location are then evaluated and compared to those of a taut cable with a viscous damper at arbitrary location, and novel frequency shifts are observed. The characterized complex frequencies presented in this paper can be used for preliminary damping effect evaluation of an adaptive passive or semi-active or active device for cable vibration control.

Performance Evaluation of a Nonlinear Cable Damper for Stay Cables Using Wind Vibration Analysis (사장교 케이블의 풍진동 해석을 통한 비선형 댐퍼의 성능 검증)

  • Kim, Saang-Bum;Lee, Sung-Jin
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2007.04a
    • /
    • pp.603-606
    • /
    • 2007
  • Wind induced vibration of a stay cable with a nonlinear friction damper is investigated. Stay cables are likely to vibrate under several wind-related environments, and cable dampers can be used to suppress the excessive vibrations of stay cables. Conventional design of cable dampers are based on the equivalent modal damping achieved by the cable damper. However, the equivalent modal damping achieved by nonlinear dampers are depend on the vibration characteristics like the amplitude of the vibration. In this paper, not only the achieved equivalent modal damping, but also the vibration levels under gust wind are analyzed through the time domain buffeting analysis. Numerical simulation results show the efficacy of a nonlinear friction damper for suppressing the excessive vibration of a stay cable.

  • PDF

Multi-mode cable vibration control using MR damper based on nonlinear modeling

  • Huang, H.W.;Liu, T.T.;Sun, L.M.
    • Smart Structures and Systems
    • /
    • v.23 no.6
    • /
    • pp.565-577
    • /
    • 2019
  • One of the most effective countermeasures for mitigating cable vibration is to install mechanical dampers near the anchorage of the cable. Most of the dampers used in the field are so-called passive dampers where their parameters cannot be changed once designed. The parameters of passive dampers are usually determined based on the optimal damper force obtained from the universal design curve for linear dampers, which will provide a maximum additional damping for the cable. As the optimal damper force is chosen based on a predetermined principal vibration mode, passive dampers will be most effective if cable undergoes single-mode vibration where the vibration mode is the same as the principal mode used in the design. However, in the actual engineering practice, multi-mode vibrations are often observed for cables. Therefore, it is desirable to have dampers that can suppress different modes of cable vibrations simultaneously. In this paper, MR dampers are proposed for controlling multi-mode cable vibrations, because of its ability to change parameters and its adaptability of active control without inquiring large power resources. Although the highly nonlinear feature of the MR material leads to a relatively complex representation of its mathematical model, effective control strategies can still be derived for suppressing multi-mode cable vibrations based on nonlinear modelling, as proposed in this paper. Firstly, the nonlinear Bouc-wen model is employed to accurately portray the salient characteristics of the MR damper. Then, the desired optimal damper force is determined from the universal design curve of friction dampers. Finally, the input voltage (current) of MR damper corresponding to the desired optimal damper force is calculated from the nonlinear Bouc-wen model of the damper using a piecewise linear interpolation scheme. Numerical simulations are carried out to validate the effectiveness of the proposed control algorithm for mitigating multi-mode cable vibrations induced by different external excitations.

Study of the Non-linearity of Cable Damper to Enhance Damping Performance of Stay Cable (사장교 케이블의 감쇠성능 향상을 위한 댐퍼의 비선형성 연구)

  • Seo, Ju-Won;Koh, Hyun-Moo
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.17 no.9
    • /
    • pp.785-796
    • /
    • 2007
  • This study offers a design procedure of optimum cable damper for multi-mode vibration control with nonlinear damper and also investigates the relation between mode and amplitude dependency. The proposed multi-mode damping index, which is defined as a potential energy loss ratio of cable vibration, is a main component of optimization problem of optimum nonlinear damper. In order to include the amplitude dependency of nonlinear damper, three types of multi-mode patterns such as ambient vibration, support excitation and rain-wind induced vibration are assumed. The optimum damper exponent depends on amplitude patterns. In case of ambient vibration, optimum factor is less than 0.5 and in case of support excitation or rain-wind induced vibration it is between 0.5 and 1.0.