• Title/Summary/Keyword: Calnexin

Search Result 7, Processing Time 0.029 seconds

Calnexin as a dual-role biomarker: antibody-based diagnosis and therapeutic targeting in lung cancer

  • Soyeon Lim;Youngeun Ha;Boram Lee;Junho Shin;Taiyoun Rhim
    • BMB Reports
    • /
    • v.57 no.3
    • /
    • pp.155-160
    • /
    • 2024
  • Lung cancer carries one of the highest mortality rates among all cancers. It is often diagnosed at more advanced stages with limited treatment options compared to other malignancies. This study focuses on calnexin as a potential biomarker for diagnosis and treatment of lung cancer. Calnexin, a molecular chaperone integral to N-linked glycoprotein synthesis, has shown some associations with cancer. However, targeted therapeutic or diagnostic methods using calnexin have been proposed. Through 1D-LCMSMS, we identified calnexin as a biomarker for lung cancer and substantiated its expression in human lung cancer cell membranes using Western blotting, flow cytometry, and immunocytochemistry. Anti-calnexin antibodies exhibited complement-dependent cytotoxicity to lung cancer cell lines, resulting in a notable reduction in tumor growth in a subcutaneous xenograft model. Additionally, we verified the feasibility of labeling tumors through in vivo imaging using antibodies against calnexin. Furthermore, exosomal detection of calnexin suggested the potential utility of liquid biopsy for diagnostic purposes. In conclusion, this study establishes calnexin as a promising target for antibody-based lung cancer diagnosis and therapy, unlocking novel avenues for early detection and treatment.

Possible Molecular Chaperones for Lipoprotein Lipase in Endoplasmic Reticulum

  • Yang, Jeong-Yeh;Kim, Mee-Ae;Koo, Bon-Sun;Kim, Sun-Mee;Park, Jin-Woo
    • BMB Reports
    • /
    • v.32 no.3
    • /
    • pp.311-316
    • /
    • 1999
  • Studies in adipocytes indicate that secretion of active lipoprotein lipase (LPL) was strictly regulated by a quality control system in the endoplasmic reticulum (ER). However, there has been no report about the ER chaperones participating in the folding and assembly of LPL. Many chaperones are known to bind unfolded proteins and dissociate from them through the ATP-hydrolyzing reaction. In this study, putative ER chaperones for LPL were determined by affinity chromatography using denatured LPL as an affinity ligand and elution with ATP. BiP, grp94, calreticulin, and another 50 kDa K-D-E-L protein in the ER of rat adipose tissue were bound to denatured LPL and eluted by ATP. Calnexin was bound to denatured LPL; however, it was not eluted by ATP but by acetic acid. These results indicate that, at least, BiP, grp94, calreticulin, calnexin, and the unidentified 50 kDa protein might act as putative chaperones for the proper folding and assembly of LPL in ER.

  • PDF

Expression of the cAMP Phosphodiesterase 7A1 Gene by Endoplasmic Reticulum Stress (소포체스트레스에 의한 cAMP phosphodiesterase 7A1 유전자의 발현)

  • Kwon, Ki-Sang;Kwon, Young-Sook;Kwon, O-Yu
    • Journal of Life Science
    • /
    • v.22 no.2
    • /
    • pp.281-284
    • /
    • 2012
  • This study demonstrated that upregulation of gene expression of endoplasmic reticulum (ER) stress chaperones (Bip, ERp29, calnexin, and PDI), ER stress sensors (PERK, ATF6, and Ire1), and cAMP phosphodiesterase 7A1 (cAMP PDE7A1) was induced by ER stresses in FRTL5 cells. While removing A23187 from the culture medium restored upregulation of cAMP PDE7A1 gene expression, removal of thapsigargin did not recover its expression. In addition, cAMP PDE7A1 gene expression was strongly inhibited by treatment with A23187 combined with thyroid stimulating hormone (TSH). The results are the first to show that ER stress induces cAMP PDE7A1 gene expression.

Expression of Endoplasmic Reticulum Membrane Kinases by Thyroid Stimulating Hormone in the FRTL-5 Cells

  • Jin, Cho-Yi;Kwon, Ki-Sang;Han, Song-Yi;Goo, Tae-Won;Kwon, O-Yu
    • Biomedical Science Letters
    • /
    • v.14 no.1
    • /
    • pp.59-62
    • /
    • 2008
  • This experiment was performed to study the effect of TSH (thyroid-stimulating hormone) on the expression of endoplasmic reticulum (ER) chaperones in the rat thyrocytes FRTL-5 cells. Although the expressions of ER membrane kinases (ATF6, IRE1 and PERK) were specially enhanced under absence of TSH, no remarkable up- or down regulations of ER chaperones (BiP, CHOP and Calnexin) were detected by TSH. We firstly report here that TSH by dose up-regulated expression of ER membrane kinases in FRTL-5 culture thyrocytes.

  • PDF

Cellular Changes of Phenotype and Collagenase-1 Expression in Healing Corneal Stromal cells

  • Jung, Jae-Chang
    • Animal cells and systems
    • /
    • v.7 no.3
    • /
    • pp.271-277
    • /
    • 2003
  • Regulation of endoplasmic reticulum(ER) chaperone, ERp29, in traumatized rat spinal cord was investigated. Compared to the control, ERp29 expression was down-regulated at the lesion site 1 d after spinal cord injury. However, ERp29 expression gradually increased from 3 d after the injury and peaked remarkably after 7 d. Two ER chaperones (GRP94 and BiP) showed constantly strong expression levels 1 d after spinal cord injury while the expression levels of the other two (calnexin and PDI) were unchanged. In the case of ERp72, its expression level was increased 1 d after the injury and gradually decreased thereafter. This study suggests that ERp29 expression in the spinal cord after traumatic injury might be associated with the posttraumatic neural survival, playing a role as a molecular chaperone.

The Identification of Proteins Interacting with CD1d (CD1d와 상호작용하는 단백질의 동정)

  • Hwang, Kwang-Woo;Chun, Tae-Hoon
    • YAKHAK HOEJI
    • /
    • v.50 no.4
    • /
    • pp.263-267
    • /
    • 2006
  • CD1d is an unique antigen presenting molecule which provides antigenic repertoires to NKT cells. To examine molecules required for CD1d antigen presentation, we determined an interaction between CD1d and several endoplasmic reticulum (ER) resident molecular chaperones by co-immunoprecipitation. Results indicated that calnexin and calreticulin seem to be bound to mouse CD1d, but TAP and tapasin do not bind. Further, we screened an yeat two hybrid system to identify proteins that help mouse CD1d transportation in the cytosol. We found that two proteins, heat shock protein a sub-unit $(Hsp90{\alpha})$ and protein kinase C and casein kinase substrate in neurons 3 (PACSIN-3), interact with CD1d. Future study will be focus on the role of these molecules during the CD1d antigen presentation.

Endoplasmic Reticulum Stress Response and Apoptosis via the CoCl2-Induced Hypoxia in Neuronal Cells (CoCl2 처리로 유도된 hypoxia상태에서 세포자살과 ER stress에 관련된 인자의 발현)

  • Kim, Seon-Hwan;Kwon, Hyon-Jo;Koh, Hyeon-Song;Song, Shi-Hun;Kwon, Ki-Sang;Kwon, O-Yu;Choi, Seung-Won
    • Journal of Life Science
    • /
    • v.20 no.12
    • /
    • pp.1820-1828
    • /
    • 2010
  • Cobalt(II) chloride, a chemical compound with the formula$CoCl_2$, has been widely used in the treatment of anemia, as a chemical agent for the induction of hypoxia in cell cultures, and is known to activate hypoxic signaling. However, excessive exposure to cobalt is associated with several clinical conditions, including asthma, pneumonia, and hematological abnormalities, and can lead to tissue and cellular toxicity. It is also known to induce apoptosis. One of the questions was that of whether $CoCl_2$ might induce apoptosis via endoplasmic reticulum (ER) stress in neurons. To address this question, first, the level of DNA fragmentation was measured for assay of apoptotic rates using $CoCl_2$ with neuron PC12 cells. After confirmation of apoptosis inductions, under the same conditions, the expression levels of ER stress associated factors [ER chaperones Bip, calnexin, ERp72, ERp29, PDI, and ER membrane kinases (IRE1, ATF6, PERK)] were examined by RT-PCR and Western blotting. These results indicated that apoptosis is induced through activation of ER membrane kinases via ER stress. In conclusion, during induction of apoptosis through $CoCl_2$-induced hypoxia in neuron PC12 cells, ER membrane kinase of IRE1 was dominantly up-expressed, and, consecutively, TRAF2, which has been suggested to be one of the links connecting apoptosis and ER stress, was strongly up-expressed.