• Title/Summary/Keyword: Campbell Diagram

Search Result 83, Processing Time 0.036 seconds

Dynamic Analysis of Rotating Bodies Using Model Order Reduction (모델차수축소기법을 이용한 회전체의 동해석)

  • Han, Jeong-Sam
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2011.04a
    • /
    • pp.443-444
    • /
    • 2011
  • This paper discusses a model order reduction for large order rotor dynamics systems results from the finite element discretization. Typical rotor systems consist of a rotor, built-on parts, and a support system, and require prudent consideration in their dynamic analysis models because they include unsymmetric stiffness, localized nonproportional damping and frequency dependent gyroscopic effects. When the finite element model has a very large number of degrees of freedom because of complex geometry, repeated dynamic analyses to investigate the critical speeds, stability, and unbalanced response are computationally very expensive to finish within a practical design cycle. In this paper, the Krylov-based model order reduction via moment matching significantly speeds up the dynamic analyses necessary to check eigenvalues and critical speeds of a Nelson-Vaugh rotor system. With this approach the dynamic simulation is efficiently repeated via a reduced system by changing a running rotational speed because it can be preserved as a parameter in the process of model reduction. The Campbell diagram by the reduced system shows very good agreement with that of the original system. A 3-D finite element model of the Nelson-Vaugh rotor system is taken as a numerical example to demonstrate the advantages of this model reduction for rotor dynamic simulation.

  • PDF

Development of Analysis Program of Dynamic Characteristic for the Propulsion Shafting System (선박추진축계 동특성 분석 프로그램 개발)

  • Ha, Jeong-Min;Lee, Jeong-Myeong;Lee, Jeong-Hoon;Kim, Yong-Whi;Ahn, Byeong-Hyun;Choi, Byeong-Keun;Kim, Won-Chul
    • Journal of Power System Engineering
    • /
    • v.18 no.2
    • /
    • pp.57-61
    • /
    • 2014
  • Due to the changes of marine transportation industry, it requires ship in larger scale and high speed. In order to operate efficiently, the engine should be work in high power and high horse power. The increase of the number of the propeller blades and the pitch of the screw and the weight, vibration of shafting problems occurs. To evaluate the safety of the system through analyzing the dynamic characteristics propulsion shafting system, was used to prove or to verify the Lalanne & Ferraris model validation.. It indicates that the Program through Campbell diagram and Critical speed map, Root rocus map, to ensure the reliability of the experimental model.

Evaluation of Blades Vibration Reliabilities of KGT-74 Small Gas Turbine (KGT-74 소형 가스터빈 블레이드의 진동 신뢰성 평가)

  • 이안성;김영철;이동환;나언주
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.05a
    • /
    • pp.297-302
    • /
    • 2003
  • To ensure a safe operation of the prototype KGT-74 ㎾ small gas turbine, vibrational reliabilities of the compressor 1st, 2nd. and 3rd stages and turbine blades have been estimated and reviewed. FE analyses have been tarried out to obtain the natural vibration characteristics of the blades, and impact modal testings have been performed on every each one of the blades to measure their 1st natural frequencies. Then, the Campbell diagram analyses have been carried out to Judge the safety of the blades from resonant failures up to 6k harmonics. Results show that the compressor 1st stage blade is exposed to a potential resonant failure with 3k harmonic around a rated speed of 30,000rpm but that the other compressor 2nd and 3rd stages and turbine blades are safe from resonant failures. Finally. 27,900 rpm Is selected as the safe operation limit for the KGT-74 ㎾ gas turbine relative to the blade vibrations.

  • PDF

The Critical Speed Analysis of the Differential Planetary Gear Train of a Concrete Mixer Truck Mixer Reducer (콘크리트 믹서 트럭용 믹서 감속기의 차동 유성 기어 트레인에 대한 위험속도 해석)

  • Bae, Myung Ho;Bae, Tae Yeol;Kim, Dang Ju
    • Journal of Drive and Control
    • /
    • v.14 no.1
    • /
    • pp.1-7
    • /
    • 2017
  • The power train of a concrete truck mixer reducer includes differential planetary gears to get a large reduction ratio for operating the mixer drum in a compact structure. These differential planetary gears are a very important part of the mixer reducer where strength problems are the main concern. Gear bending stress, gear compressive stress and scoring failure are the main concerns. Many failures in differential planetary gears are due to the insufficient gear strength and resonance problems caused by major excitation forces such as gear mating failure in the transmission. In the present study, where the excitation frequencies are the gear tooth passing frequencies of the mating gears, a Campbell diagram is used to calculate differential planetary gear critical speeds. Mode shapes and natural frequencies of the differential planetary gears are calculated by CATIA V5. These are used to predict gear resonance failures by comparing the working speed range with the critical speeds due to the gear transmission errors of the differential planetary gears.

The Critical Speed Analysis of Gear Train for Hydro-Mechanical Continuously Variable Transmission (기계유압식 무단변속기용 기어트레인에 대한 위험속도 해석)

  • Bae, Myung Ho;Bae, Tae Yeol;Choi, Sung Kwang
    • Journal of Drive and Control
    • /
    • v.14 no.4
    • /
    • pp.71-78
    • /
    • 2017
  • The power train of hydro-mechanical continuously variable transmission (HMCVT) for 8-ton class forklift includes hydro-static units, hydraulic multi-wet disc brake & clutches and complex helical & planetary gears. The helical & planetary gears are key components of HMCVT's power train wherein strength problems are the main concerns including gear bending stress, gear compressive stress, and scoring failure. Many failures in power train gears of HMCVT are due to the insufficient gear strength and resonance problems caused by major excitation forces, such as gear transmission error of mating gear fair in the transmission. In this study, wherein excitation frequencies are the gear tooth passing frequencies of the mating gears, a Campbell diagram is used to calculate the power train gears' critical speeds. Mode shapes and natural frequencies of the power train gears are calculated by CATIA V5. These are used to predict resonance failures by comparing the actual working speed range with the critical speeds due to the gear transmission errors of HMCVT's power train gears.

Vibration reduction of the Engine Casing "B" deck in the handymax vessel (Handymax 급 PC 선 Engine Casing "B" deck 의 진동 저감)

  • Seo, Myung-Gab;Jeong, Tae-Seok;Seok, Ho-Il
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2009.04a
    • /
    • pp.498-503
    • /
    • 2009
  • This paper presents the vibration problem of the Engine Casing (E/C) "B" deck in the handymax vessel and describes a method to avoid resonance. The first ship of the series did not have any vibration issue on the "B" deck. However, resonance condition occurred when additional machine was installed to the following vessels. To understand the dynamic characteristics of the deck, the normal mode analysis and impact test have been performed. Within the normal operating range of the vessel, the $1^{st}$ natural frequency of the E/C "B" deck is close to the main engine's $6^{th}$ order. Based on these analysis, a reinforcement on the deck was suggested and it proved to be effective. Since actual impact test after the reinforcement also confirmed the resonance avoidance.

  • PDF

A Study on the Safety Estimation of Low Pressure Torsion mounted Turbine Blade (비틀림 마운트형 저압 터빈 블레이드의 안전성 평가에 관한 연구)

  • 홍순혁;조석수;주원식
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.3
    • /
    • pp.149-156
    • /
    • 2003
  • The estimation of fatigue limit for the component with complicated shape is difficult than of standard fatigue specimen, due to complex test equipment. So, we substitute maximum principle stress from FEM results for fatigue limit diagram made by standard fatigue specimen. Then we can estimate endurance safety of component with high trust. The static stress analysis, the nonlinear contact stress analysis and the model analysis for turbine blade is performed by ANSYS ver. 5.6. the comparison of maximum static stress around hole with maximum contact stress between pun and hole can make the cause of fracture for turbine blade clear. The difference of fatigue limit between fatigue test by standard specimen and in-service mechanical components is due to surface roughness and machining condition etc. In in-service mechanical components, Goodman diagram has to consider surface roughness for failure analysis. To find fracture mechanism of torison-mounted blade in nuclear plant. This study performs the static stress, the nonlinear contact stress and the modal analysis on torison-mounted blade with finite element method and makes the estimation for safety of turbine blade.

G/T 250톤 카페리선 축계의 동특성에 관한 고찰

  • Gang, Byeong-Mo;Go, Jae-Yong;Seo, Gwang-Cheol
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2015.07a
    • /
    • pp.82-84
    • /
    • 2015
  • 유한요소법을 이용하여 카페리선 제작 시 축계의 제작 및 강도의 문제를 Campbell Diagram 및 Modal 해석을 통한 동특성 분석을 하였다. 이를 통하여 양방향 차도선의 추진 방향 및 후진 방향 축계 작동 시 공진 현상 및 위험속도를 분석 결과 안정성을 보인 것으로 판단된다.

  • PDF

Rotor Dynamics Analysis of a Spindle System for a High speed Grinding Machine (고속 연삭기 주축 시스템의 회전체 역학 해석)

  • 최영휴
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2000.04a
    • /
    • pp.714-719
    • /
    • 2000
  • This paper describes a transfer matrix approach to analyze the dynamics of a high sped flexible rotor system supported at 2 positions by five ceramic bearings. The rotor system is modelled as lumped parameters in which many factors are considered not only lumped inertia or mass, bending moment, shear force but also gyroscopic effect and unbalance. The equation of motion is derived in the transfer matrix form, from which the eigenvalues equation is also derived. The transfer natural frequencies and modes. The eigenvalues, eigenmodes, campbell diagram, whirling critical speed, whirling modes, and the response of unbalance are calculated and discussed.

  • PDF

A Study on Vibration Characteristics of Helical Gear Pairing (헬리컬 기어시스템의 진동특성 연구)

  • 이형우;정동현;박노길
    • Journal of KSNVE
    • /
    • v.10 no.1
    • /
    • pp.74-81
    • /
    • 2000
  • The vibrational model of a helical gear pair is developed with considering the elastic deformation of the active teeth and the body to be a rigid. The main source of vibration in geared system which has been known to be the gear transmission error is mathematically formulated and used for the analysis of vibrational characteristics of geared system. As an example, a simple geared system containing a helical gearing is considered. The critical speeds are found by the campbell diagram and compared with the experimental results.

  • PDF