• 제목/요약/키워드: Cancer Cell

검색결과 8,811건 처리시간 0.036초

Every Single Cell Clones from Cancer Cell Lines Growing Tumors In Vivo May Not Invalidate the Cancer Stem Cell Concept

  • Li, Fengzhi
    • Molecules and Cells
    • /
    • 제27권4호
    • /
    • pp.491-492
    • /
    • 2009
  • We present the result of our research on the tumorigenic ability of single cell clones isolated from an aggressive murine breast cancer cell line in a matched allografting mouse model. Tumor formation is basically dependent on the cell numbers injected per location. We argue that in vivo tumor formation from single cell clones, isolated in vitro from cancer cell lines, may not provide conclusive evidence to disprove the cancer stem cell (CSC) theory without additional data.

New established cell lines from undifferentiated pleomorphic sarcoma for in vivo study

  • Eun-Young Lee;Young-Ho Kim;Md Abu Rayhan;Hyun Guy Kang;June Hyuk Kim;Jong Woong Park;Seog-Yun Park;So Hee Lee;Hye Jin You
    • BMB Reports
    • /
    • 제56권4호
    • /
    • pp.258-264
    • /
    • 2023
  • As a high-grade soft-tissue sarcoma (STS), undifferentiated pleomorphic sarcoma (UPS) is highly recurrent and malignant. UPS is categorized as a tumor of uncertain differentiation and has few options for treatment due to its lack of targetable genetic alterations. There are also few cell lines that provide a representative model for UPS, leading to a dearth of experimental research. Here, we established and characterized new cell lines derived from two recurrent UPS tissues. Cells were obtained from UPS tissues by mincing, followed by extraction or dissociation using enzymes and culture in a standard culture environment. Cells were maintained for several months without artificial treatment, and some cell clones were found to be tumorigenic in an immunodeficient mouse model. Interestingly, some cells formed tumors in vivo when injected after aggregation in a non-adherent culture system for 24 h. The tissues from in vivo study and tissues from patients shared common histological characteristics. Pathways related to the cell cycle, such as DNA replication, were enriched in both cell clones. Pathways related to cell-cell adhesion and cell-cell signaling were also enriched, suggesting a role of the mesenchymal-to-epithelial transition for tumorigenicity in vivo. These new UPS cell lines may facilitate research to identify therapeutic strategies for UPS.

What is a Cancer Cell? Why does it Metastasize?

  • Hegde, Mahabaleshwar Vishnu;Mali, Aniket Vijay;Chandorkar, Shubha Sandeep
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제14권6호
    • /
    • pp.3987-3989
    • /
    • 2013
  • This is a commentary on what a cancer cell is and why cancer cells metastasize. Normal cell get transformed to a cancer cell, with excessive production of free radicals that mutate the DNA of a normal cell. The immortality and malignant stage of transformed cell is maintained by higher GSH levels. With the faster rate of proliferation, when the cancer cell finds the place of origin is not conducive to its further growth, cancer cell chooses to take the metastatic course. We argue that if we can stop the exit of cancer cell from place of origin, cancer spread can be stopped or even cured.

셀러리악 추출물의 암세포 증식 억제 효과 (Inhibitory Effect of Celeriac Extract on Cancer Cell Proliferation)

  • 이재혁;박정숙
    • 한국융합학회논문지
    • /
    • 제12권9호
    • /
    • pp.179-183
    • /
    • 2021
  • 본 연구는 다양한 항암성분을 함유한 Celeriac Extract의 암세포 증식에 미치는 영향을 살펴보기 위하여 실시되었다. 실험에 사용한 암 세포주는 5종으로 폐암세포 A549, 전립샘암세포 DU-145, 자궁암세포 HeLa, 유방암세포 MCF-7, 간암세포 SNU-182 로 모두 인체 유래 암 세포주를 사용하였으며 Celeriac Extract 10ug/mL, 100ug/mL, 1000ug/mL 에 대한 암세포의 증식 억제는 CCK-8 방법을 이용하여 측정하였다. 암세포 증식 억제를 살펴본 결과 Celeriac Extract 1000ug/mL는 폐암세포 A549, 전립샘암세포 DU-145, 자궁암세포 HeLa, 간암세포 SNU-182에서 유의한 증식 억제를 보였으며 농도 의존성을 나타냈다. 그러나 유방암세포 MCF-7 에서는 농도 의존적인 감소만 보였다. 결론적으로, 다양한 인간유래 암 세포주를 이용한 Celeriac Extract의 세포 증식 억제기전들은 암 예방효과 및 치료제 개발의 잠재력을 제공한다고 볼 수 있다.

Dexamethasone Interferes with Autophagy and Affects Cell Survival in Irradiated Malignant Glioma Cells

  • Komakech, Alfred;Im, Ji-Hye;Gwak, Ho-Shin;Lee, Kyue-Yim;Kim, Jong Heon;Yoo, Byong Chul;Cheong, Heesun;Park, Jong Bae;Kwon, Ji Woong;Shin, Sang Hoon;Yoo, Heon
    • Journal of Korean Neurosurgical Society
    • /
    • 제63권5호
    • /
    • pp.566-578
    • /
    • 2020
  • Objective : Radiation is known to induce autophagy in malignant glioma cells whether it is cytocidal or cytoprotective. Dexamethasone is frequently used to reduce tumor-associated brain edema, especially during radiation therapy. The purpose of the study was to determine whether and how dexamethasone affects autophagy in irradiated malignant glioma cells and to identify possible intervening molecular pathways. Methods : We prepared p53 mutant U373 and LN229 glioma cell lines, which varied by phosphatase and tensin homolog (PTEN) mutational status and were used to make U373 stable transfected cells expressing GFP-LC3 protein. After performing cell survival assay after irradiation, the IC50 radiation dose was determined. Dexamethasone dose (10 μM) was determined from the literature and added to the glioma cells 24 hours before the irradiation. The effect of adding dexamethasone was evaluated by cell survival assay or clonogenic assay and cell cycle analysis. Measurement of autophagy was visualized by western blot of LC3-I/LC3-II and quantified by the GFP-LC3 punctuated pattern under fluorescence microscopy and acridine orange staining for acidic vesicle organelles by flow cytometry. Results : Dexamethasone increased cell survival in both U373 and LN229 cells after irradiation. It interfered with autophagy after irradiation differently depending on the PTEN mutational status : the autophagy decreased in U373 (PTEN-mutated) cells but increased in LN229 (PTEN wild-type) cells. Inhibition of protein kinase B (AKT) phosphorylation after irradiation by LY294002 reversed the dexamethasone-induced decrease of autophagy and cell death in U373 cells but provoked no effect on both autophagy and cell survival in LN229 cells. After ATG5 knockdown, radiation-induced autophagy decreased and the effect of dexamethasone also diminished in both cell lines. The diminished autophagy resulted in a partial reversal of dexamethasone protection from cell death after irradiation in U373 cells; however, no significant change was observed in surviving fraction LN229 cells. Conclusion : Dexamethasone increased cell survival in p53 mutated malignant glioma cells and increased autophagy in PTEN-mutant malignant glioma cell but not in PTEN-wildtype cell. The difference of autophagy response could be mediated though the phosphatidylinositol 3-kinase/AKT/mammalian target of rapamycin signaling pathway.

알레젠 제거 옻나무 추출물 투여로 생존기간이 연장된 편평세포폐암 환자 1례 (A Case Report of Squamous Cell Lung Cancer Patient Treated with Allergen Removed Rhus Verniciflua Stokes Extract)

  • 김은희;박소정;최원철;이수경
    • 대한암한의학회지
    • /
    • 제16권2호
    • /
    • pp.35-41
    • /
    • 2011
  • Background : Lung cancer is one of the most common malignancy in the world. Types of lung cancer are Non small cell lung cancer and small cell lung cancer. Subtypes of Non small cell lung cancer are adenocarcinoma, squamous cell carcinoma and large cell carcinoma. Knowing the type of lung cancer is important in determining both treatment and prognosis. Recently, due to newly developed anti-cancer drugs, squamous cell carcinoma has relatively poor prognosis than non-squamous cell carcinoma. Case : We report a squamous cell lung cancer case treated with allergen removed Rhus verniciflua Stokes (aRVS) extract. The patients initially diagnosed stage squamous cell lung carcinoma, but she refused recommended operation. She initiated aRVS extract monotherapy in October. 2006. The follow up Computed tomography in March. 2007, she diagnosed stable disease of tumor response on aRVS treatment. However, this case was lost to follow up for 6 months while she was treated with tomotherapy. In October 2007, she came back to our cancer center after diagnosed stage IV metastasized lung to lung, and aRVS monotherapy was restarted. She had survived 2 years after metastasis of squamous cell lung carcinoma. Conclusion : Allergen removed Rhus verniciflua Stokes(aRVS) sucessfully prolonged overall survival of a squamous cell lung cancer patient.

구강 편평세포암종에서의 암줄기세포 이론과 최신 지견 (Cancer stem cell theory and update in oral squamous cell carcinoma)

  • 김덕훈;윤준용;이주현;김성민;명훈
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • 제37권2호
    • /
    • pp.97-108
    • /
    • 2011
  • Cancer stem cells have stem cell-like features, such as the ability for self-renewal and differentiation but show unlimited growth because they have the lost normal regulation of cell growth. Cancer stem cells and normal stem cells have similar features. They show high motility, diversity of progeny, robust proliferative potential, association with blood vessels, immature expression profiles, nestin expression, epidermal growth factor (EGF)-receptor expression, phosphatase and tensin homolog (PTEN) expression, hedgehog pathway activity, telomerase activity, and Wnt pathway activity. On the other hand, with cancer cells, some of these signaling pathways are abnormally modified. In 1875, Cohnheim suggested the concept of cancer stem cells. Recently, evidence for the existence of cancer stem cells was identified. In 1994, the cancer stem cells' specific cell surface marker for leukemia was identified. Since then, other specific cell surface markers for cancer stem cells in solid tumors (e.g. breast and colon cancer) have been identified. In oral cancer, studies on cancer stem cells have been performed mainly with squamous cell carcinomas. Oral cancer specific cell surface markers, which are genes strongly expressed in oral cancer and cancer stem cell specific side populations, have been identified. Cancer stem cells are resistant to radiotherapy and chemotherapy. Therefore, to eliminate malignant tumors efficiently and reduce the recurrence rate, therapy targeting cancer stem cells needs to be performed. Currently, studies targeting the cancer stem cells' specific signaling pathways, telomerase and tumor vasculatures are being done.

비트 추출물의 암세포 증식 저해 효과 (Inhibitory Effect of Beet Extract on Cancer Cell Proliferation)

  • 이재혁;박정숙
    • 한국융합학회논문지
    • /
    • 제13권2호
    • /
    • pp.257-262
    • /
    • 2022
  • 본 연구의 목적은 다양한 생리활성물질을 함유한 비트 추출물의 다양한 농도를 이용하여 인체 유래 암세포 증식 저해를 살펴보기 위하여 실시하였다. 실험에 사용한 인체 유래 암세포는 6종으로 전립샘암세포 DU145, 폐암세포 A549, 유방암세포 MCF-7, 자궁암세포 HeLa, 간암세포 SNU-182, 담도암세포 SNU-1196을 사용하였으며, 비트 추출물의 다양한 농도에 대한 암세포증식 저해를 CCK-8 방법으로 측정하였다. 암세포증식 저해를 살펴본 결과 비트 추출물은 전립샘암세포 DU145를 모든 농도에서 유의성있게 농도 의존적으로 저해하였으며, 폐암세포 A549, 전립샘암세포 DU-145는 100ug/mL, 1000ug/mL에서 자궁암세포 HeLa, 간암세포 SNU-182, 담도암세포 SNU-1196는 1000ug/mL에서 유의한 증식 저해를 보였다. 실험 결과, 다양한 인체 유래 암세포를 이용한 비트 추출물의 암세포증식 저해는 암 예방 효과 및 기능성 식품 개발의 가능성을 제공한다고 볼 수 있다.

The Cancer Stem Cell Theory: Is It Correct?

  • Yoo, Min-Hyuk;Hatfield, Dolph L.
    • Molecules and Cells
    • /
    • 제26권5호
    • /
    • pp.514-516
    • /
    • 2008
  • The cancer stem cell hypothesis posits that tumor growth is driven by a rare subpopulation of cells, designated cancer stem cells (CSC). Studies supporting this theory are based in large part on xenotransplantation experiments wherein human cancer cells are grown in immunocompromised mice and only CSC, often constituting less than 1% of the malignancy, generate tumors. Herein, we show that all colonies derived from randomly chosen single cells in mouse lung and breast cancer cell lines form tumors following allografting histocompatible mice. Our study suggests that the majority of malignant cells rather than CSC can sustain tumors and that the cancer stem cell theory must be reevaluated.

The effects of human milk proteins on the proliferation of normal, cancer and cancer stem like cells

  • Kang, Nam Mi;Cho, Ssang-Goo;Dayem, Ahmed Abdal;Lee, Joohyun;Bae, Seong Phil;Hahn, Won-Ho;Lee, Jeong-Sang
    • 분석과학
    • /
    • 제31권6호
    • /
    • pp.232-239
    • /
    • 2018
  • Human breast milk (HBM) provides neonates with indispensable nutrition. The present study evaluated the anti-cancer activity of diluted and pasteurized early HBM (< 6 weeks' lactation) on human breast cancer cell lines. The cell lines MCF7 and MDA-MB231 were exposed to 1 % HBM from the 1st, 3rd, and 6th weeks of lactation and exhibited reduced proliferation rates. As controls, breast cell lines (293T and MCF-10A), breast cancer cell lines (MCF-7 and MDA-MB-231), and $CD133^{hi}CXCR4^{hi}ALDH1^{hi}$ patient-derived human cancer stem-like cells (KU-CSLCs) were treated with prominent milk proteins ${\beta}$-casein, ${\kappa}$-casein, and lactoferrin at varying doses (10, 50, and $100{\mu}g$) for 24 or 48 hrs. The impact of these proteins on cell proliferation was investigated. Breast cancer cell lines treated with ${\kappa}$-casein and lactoferrin exhibited significantly reduced viability, in both a dose- and time-dependent manner. Interestingly, ${\kappa}$-casein selectively impacted only cancer (but not normal breast) cell lines, particularly the more malignant cell line. However, ${\beta}$-casein-exposed human breast cancer cell lines exhibited a significantly higher proliferation rate. Thus, ${\kappa}$-casein and lactoferrin appear to exert selective anti-cancer activities. Further studies are warranted to determine the mechanisms underlying ${\kappa}$-casein- and lactoferrin-mediated cancer cell-selective cytotoxic effects.