• Title/Summary/Keyword: Candida glabrata

Search Result 42, Processing Time 0.032 seconds

Genetic Variations of Candida glabrata Clinical Isolates from Korea using Multi-locus Sequence Typing (Multi-locus sequence typing을 이용한 한국에서 분리한 Candida glabrata 임상균주의 유전자 유형 분석)

  • Kang, Min Ji;Lee, Kyung Eun;Jin, Hyunwoo
    • Journal of Life Science
    • /
    • v.30 no.2
    • /
    • pp.122-128
    • /
    • 2020
  • Although Candida albicans is the major fungal pathogen of candidemia, severe infections by non-albicans Candida (NAC) spp. have been increasing in recent years. Among NAC spp., C. glabrata has emerged as the second most common pathogen. However, few studies have been conducted to investigate its structure, epidemiology, and basic biology. In the present study, multi-locus sequence typing (MLST) was performed with a total of 102 C. glabrata clinical isolates that were isolated from various types of clinical specimen. For MLST, six housekeeping genes-FKS, LEU2, NMT1, TRP1, UGP1, and URA3-were amplified and sequenced. The results were analyzed using the C. glabrata database. Out of a total of 3,345 base-pair DNA sequences, 49 variable nucleotide sites were found, and the results showed that 12 different sequence types (ST) were identified from the 102 clinical isolates. The data also demonstrated that the undetermined ST1 was the most predominant ST in Korea. Further, seven undetermined STs (UST) containing UST2-8 were classified at specific loci. The data from this study may provide a fundamental database for further studies on C. glabrata, including its epidemiology and evolution. The data may also contribute to the development of novel antifungal agents and diagnostic tests.

Candida glabrata infection of urinary bladder in a Chinchilla Persian cat

  • Woo, Seungji;Kim, Hak-Hyun;Kang, Ji-Houn;Na, Ki-Jeong;Yang, Mhan-Pyo
    • Korean Journal of Veterinary Research
    • /
    • v.57 no.2
    • /
    • pp.135-137
    • /
    • 2017
  • A 5-year-old castrated male Chinchilla Persian cat weighing 4.84 kg was referred for hematuria. The cat had a history of urethrostomy and bacterial cystitis. In urine culture, Candida glabrata was cultured on Sabouraud dextrose agar. Based on these results, the cat was diagnosed with Candida cystitis. Subsequently, oral administration of fluconazole was initiated. Urine culture was negative at 31 days after administration. This case describes the diagnosis and treatment of Candida glabrata infection of urinary bladder in a cat with a history of urethrostomy.

Probe-based qPCR Assay for Rapid Detection of Predominant Candida glabrata Sequence Type in Korea

  • Bae, Jinyoung;Lee, Kyung Eun;Jin, Hyunwoo
    • Biomedical Science Letters
    • /
    • v.25 no.4
    • /
    • pp.407-416
    • /
    • 2019
  • Recent years have seen an increase in the incidence of candidiasis caused by non-albicans Candida (NAC) species. In fact, C. glabrata is now second only to C. albicans as the most common cause of invasive candidiasis. Therefore, the rapid genotyping specifically for C. glabrata is required for early diagnosis and treatment of candidiasis. A number of genotyping assays have been developed to differentiate C. glabrata sequence types (STs), but they have several limitations. In the previous study, multi-locus sequence typing (MLST) has performed with a total of 101 C. glabrata clinical isolates to analyze the prevalent C. glabrata STs in Korea. A total of 11 different C. glabrata STs were identified and, among them, ST-138 was the most commonly classified. Thus, a novel probe-based quantitative PCR (qPCR) assay was developed and evaluated for rapid and accurate identification of the predominant C. glabrata ST-138 in Korea. Two primer pairs and hybridization probe sets were designed for the amplification of internal transcribed spacer 1 (ITS1) region and TRP1 gene. Analytical sensitivity of the probe-based qPCR assay was 100 ng to 10 pg and 100 ng to 100 pg (per 1 μL), which target ITS1 region and TRP1 gene, respectively. This assay did not react with any other Candida species and bacteria except C. glabrata. Of the 101 clinical isolates, 99 cases (98%) were concordant with MLST results. This novel probe-based qPCR assay proved to be rapid, sensitive, highly specific, reproducible, and cost-effective than other genotyping assay for C. glabrata ST-138 identification.

A Comparison of the Ability of Fungal Internal Transcribed Spacers and D1/D2 Domain Regions to Accurately Identify Candida glabrata Clinical Isolates Using Sequence Analysis

  • Kang, Min-Ji;Choi, Yoon-Sung;Kim, Sunghyun
    • Biomedical Science Letters
    • /
    • v.24 no.4
    • /
    • pp.430-434
    • /
    • 2018
  • Candida glabrata is the second most prevalent causative agent for candidiasis following C. albicans. The opportunistic yeast, C. glabrata, is able to cause the critical bloodstream infections in hospitalized patients. Conventional identification methods for yeasts are often time consuming and labor intensive. Therefore, recent studies on sequence-based identification have been conducted. Recently, sequencing the D1/D2 domain of the large subunit ribosomal RNA gene and the internal transcribed spacers (ITS) 1 and ITS2 regions of the ribosomal DNA has proven useful for DNA-based identification of most species of fungi. In the present study, therefore, fungal ITS and D1/D2 domain regions were targeted and analyzed by DNA sequencing for the accurate identification of C. glabrata clinical isolates. A total of 102 C. glabrata clinical isolates from various clinical samples including bloodstream, catheterized urine, bile and other body fluids were used in the study. The results of the DNA sequence analysis showed that the mean standard deviation of species identity percent score between ITS and D1/D2 domain regions was $97.8%{\pm}2.9$ and $99.7%{\pm}0.46$, respectively. These results revealed that the D1/D2 domain region might be a better target for identifying C. glabrata clinical isolates based on DNA sequences than the ITS1 and ITS2 regions. However, in order to evaluate the usefulness of D1/D2 domain region for species identification of all Candida species, other Candida species such as C. albicans, C. tropicalis, C. dubliniensis, and C. krusei should be verified in further studies additionally.

Azole Resistance Caused by Increased Drug Efflux in Candida glabrata Isolated from the Urinary Tract of a Dog with Diabetes Mellitus

  • Kim, Minchul;Lee, Hyekyung;Hwang, Sun-Young;Lee, Inhyung;Jung, Won Hee
    • Mycobiology
    • /
    • v.45 no.4
    • /
    • pp.426-429
    • /
    • 2017
  • A yeast-like organism was isolated from a urine sample of a 6-year-old neutered male miniature poodle dog with urinary tract infection, diabetes ketoacidosis, and acute pancreatitis. We identified the yeast-like organism to be Candida glabrata and found that this fungus was highly resistant to azole antifungal drugs. To understand the mechanism of azole resistance in this isolate, the sequences and expression levels of the genes involved in drug resistance were analyzed. The results of our analysis showed that increased drug efflux, mediated by overexpression of ATP transporter genes CDR1 and PDH1, is the main cause of azole resistance of the C. glabrata isolated here.

Transcriptome Analysis Unveils Gln3 Role in Amino Acids Assimilation and Fluconazole Resistance in Candida glabrata

  • Santos, Francisco J. Perez-de los;Garcia-Ortega, Luis Fernando;Robledo-Marquez, Karina;Guzman-Moreno, Jesus;Riego-Ruiz, Lina
    • Journal of Microbiology and Biotechnology
    • /
    • v.31 no.5
    • /
    • pp.659-666
    • /
    • 2021
  • After Candida albicans, Candida glabrata is one of the most common fungal species associated with candidemia in nosocomial infections. Rapid acquisition of nutrients from the host is important for the survival of pathogens which possess the metabolic flexibility to assimilate different carbon and nitrogen compounds. In Saccharomyces cerevisiae, nitrogen assimilation is controlled through a mechanism known as Nitrogen Catabolite Repression (NCR). NCR is coordinated by the action of four GATA factors; two positive regulators, Gat1 and Gln3, and two negative regulators, Gzf3 and Dal80. A mechanism in C. glabrata similar to NCR in S. cerevisiae has not been broadly studied. We previously showed that in C. glabrata, Gln3, and not Gat1, has a major role in nitrogen assimilation as opposed to what has been observed in S. cerevisiae in which both factors regulate NCR-sensitive genes. Here, we expand the knowledge about the role of Gln3 from C. glabrata through the transcriptional analysis of BG14 and gln3Δ strains. Approximately, 53.5% of the detected genes were differentially expressed (DEG). From these DEG, amino acid metabolism and ABC transporters were two of the most enriched KEGG categories in our analysis (Up-DEG and Down-DEG, respectively). Furthermore, a positive role of Gln3 in AAA assimilation was described, as was its role in the transcriptional regulation of ARO8. Finally, an unexpected negative role of Gln3 in the gene regulation of ABC transporters CDR1 and CDR2 and its associated transcriptional regulator PDR1 was found. This observation was confirmed by a decreased susceptibility of the gln3Δ strain to fluconazole.

Novel Synthesis of bis Acetylated Hybrid Pyrazoles as Potent Anticandidiasis Agents (항칸다디아 활성이 우수한 bis acetylated hybrid pyrazoles의 합성 연구)

  • Kanagarajan, V.;Ezhilarasi, M. R.;Gopalakrishnan, M.
    • Journal of the Korean Chemical Society
    • /
    • v.55 no.2
    • /
    • pp.256-261
    • /
    • 2011
  • A new series of bis acetylated hybrid pyrazoles were synthesized and characterized by their melting point, elemental analysis, MS, FT-IR, one-dimensional $^1H$, and $^{13}C$ NMR spectroscopic data. All the synthesized compounds were tested for their in vitro antifungal activities against Candida sp. namely Candida albicans, Candida glabrata, Candida parapsilosis, Candida dubliniensis and Candida tropicalis. A close inspection of the in vitro anticandidal activity profile in differently electron donating ($CH_3$ and $OCH_3$) and electron withdrawing (-F, -Cl, and Br) functional group substituted phenyl rings of novel hybrid pyrazoles exerted strong anticandidal activity against all the tested Candida species.

Antifungal Activity of Lactic Acid Bacteria Strains Isolated from Natural Honey against Pathogenic Candida Species

  • Bulgasem, Bulgasem Y.;Lani, Mohd Nizam;Hassan, Zaiton;Yusoff, Wan Mohtar Wan;Fnaish, Sumaya G.
    • Mycobiology
    • /
    • v.44 no.4
    • /
    • pp.302-309
    • /
    • 2016
  • The role of lactic acid bacteria (LAB) in honey as antifungal activity has received little attention and their mechanism of inhibitory of fungi is not fully understood. In this study, LAB were isolated from honey samples from Malaysia, Libya, Saudi Arabia, and Yemen. Twenty-five isolates were confirmed LAB by catalase test and Gram staining, and were screened for antifungal activity. Four LAB showed inhibitory activity against Candida spp. using the dual agar overlay method. And they were identified as Lactobacillus plantarum HS isolated from Al-Seder honey, Lactobacillus curvatus HH isolated from Al-Hanon honey, Pediococcus acidilactici HC isolated from Tualang honey and Pediococcus pentosaceus HM isolated from Al-Maray honey by the 16S rDNA sequence. The growth of Candida glabrata ATCC 2001 was strongly inhibited (>15.0 mm) and (10~15 mm) by the isolates of L. curvatus HH and P. pentosaceus HM, respectively. The antifungal activity of the crude supernatant (cell free supernatant, CFS) was evaluated using well diffusion method. The CFS showed high antifungal activity against Candida spp. especially The CFS of L. curvatus HH was significantly (p < 0.05) inhibited growth of C. glabrata ATCC 2001, C. parapsilosis ATCC 2201, and C. tropicalis ATCC 750 with inhibitory zone 22.0, 15.6, and 14.7 mm, respectively. While CFS of P. pentosaceus HM was significantly (p < 0.05) effective against C. krusei, C. glabrata, and C. albicans with inhibition zone 17.2, 16.0, and 13.3 mm, respectively. The results indicated that LAB isolated from honey produced compounds which can be used to inhibit the growth of the pathogenic Candida species.

Isolation Frequency Characteristics of Candida Species from Clinical Specimens

  • Kim, Ga-Yeon;Jeon, Jae-Sik;Kim, Jae Kyung
    • Mycobiology
    • /
    • v.44 no.2
    • /
    • pp.99-104
    • /
    • 2016
  • Candida spp. is an invasive infectious fungus, a major risk factor that can increase morbidity and mortality in hospitalized patients. In this study, 2,508 Candida spp. were isolated from various clinical specimens collected from university hospitals from July 2011 to October 2014. They were identified in order to determine isolation frequencies and characteristics by specimen, gender, age group, year, season, and month. The strain-specific isolation rate of Candida spp. is in the order of Candida albicans (1,218 strains, 48.56%), Candida glabrata (416 strains, 16.59%), Candida utilis (305 strains, 12.16%), Candida tropicalis (304 strains, 12.12%), and Candida parapsilosis (116 strains, 4.63%) and these five species accounted for more than 94% of the total strains. Of the specimens, Candida spp. were most frequently isolated from urine-catheter, followed by urinevoided, blood, sputum, other, open pus, vaginal discharge, Tip, ear discharge, bronchial aspiration and bile, in that order. Looking at the age distribution, the detection rate of patients in their 60s and older was significantly higher at 75.8% (1,900/2,508). The detection rate of patients in their 20s and younger was shown to be very low at 2.55% (64/2,508). By year, the detection rate of non-albicans Candida spp. showed a tendency to gradually increase each year compared with C. albicans. As isolation of Candida spp. from clinical samples at the specie level can vary depending on characteristics of the patient, sample, season, etc., continual studies are required.

Effect of Yeast Addition in Rice Straw Silage Fermentation (볏짚 Silage 발효를 위한 효모의 첨가 효과)

  • 옥지운;이상민;이신자;임정화;강태원;정희영;문여황;이성실
    • Journal of Animal Science and Technology
    • /
    • v.48 no.5
    • /
    • pp.691-698
    • /
    • 2006
  • Three species of the yeast Saccharomyces cerevisiae, Humicola grisea and Candida glabrata were assumed as microbial inoculants for fermentation of rice straw silage. Four types of silage innoculated with three yeasts including control (non-treatment) were opened on day 1, 3, 6, 9, 15 and 20 after ensiling, and analyzed for fermentation status (pH, crude protein, microbial counts) and the microbial population attached with silage texture using SEM (Scanning Electron Microscopy). The results obtained were summarized as fallow; The pH of silage juice was decreased to 4.3 after 6th day of fermentation in the treatments innoculated with yeast, but was not changed at the ranges of 5.47 to 5.67 in control. Crude protein concentration of silage was increased by 38~41% with yeast inoculation compared to control. From SEM observation, it could be confirmed that crude protein concentration of silage was increased by microbial growth and SCP synthesis. The yeast Saccharomyces cerevisiae and Candida glabrata could be used as useful fermenters of rice straw silage.