• Title/Summary/Keyword: Capacitive sensor

Search Result 329, Processing Time 0.026 seconds

Principle of Design and Performance of the Torque Sensor for a Electrical Power Steering (전동식 파워스티어링(EPS)용 토크센서의 설계원리와 성능테스트)

  • Lee Eung-Shin
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.13 no.5
    • /
    • pp.121-126
    • /
    • 2005
  • This paper describes the attributes, performance and development status of a high performance capacitive torque sensor intended for use in a electric power steering (EPS) system. The EPS system is composed of torque sensor, ECU, motor, gears and etc. Among the elements, torque sensor in the steering column is one of the core technologies. The new capacitive torque sensor in this paper is developed differently from working principle and mechanical structure compare to extant torque sensors in market and patent. Based on the result of numerical analysis, a experimental equipment is made which is composed of a test jig and a capacitive sensor and validity of numerical analysis and feasibility of the torque sensor are verified.

A Microcontroller-Based Lock-In Amplifier for Capacitive Sensors (용량형 센서를 위한 마이크로컨트롤러에 기반을 둔 록인 증폭기)

  • Kim, Cheong-Worl
    • Journal of Sensor Science and Technology
    • /
    • v.23 no.1
    • /
    • pp.24-28
    • /
    • 2014
  • A lock-in amplifier was proposed for capacitive sensor applications. This amplifier was based on a general-purpose microcontroller and had only a charge amplifier as analog circuits. All the other functions of lock-in amplifier except for the charge amplifier were implemented with firmware and the internal resources of the microcontroller. A rectangular signal, generated by the microcontroller, was used in a sensor-driving signal instead of a conventional sinusoidal signal. This makes it possible that the phase comparison circuit in the lockin amplifier is made with analog-to-digital converter, a timer and an interrupt controller. Using the oversampling method and the rectangular driving signal, we can make it easy to implement the peak detection function with software and sample the peak-to-peak signal at charge amplifier output. A charge amplifier was proposed to cancel out the base capacitance existing in capacitive sensors structurally. The experimental results show that the lock-in amplifier operating in the supply voltage of 3.0 V cancels out the base capacitance and has good linearity.

Error Correction of Laser Interferometer Using Capacitive Sensor (정전용량센서를 이용한 레이저 간섭계 오차보정)

  • Kim, Jae-Cheon;Seo, Suk-Hyun;Jeon, Jae-Wook;Park, Ki-Heon;You, Kwan-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2006.04a
    • /
    • pp.342-344
    • /
    • 2006
  • During last years, large investments have been directed to development and research of nano-technological products like semiconductor, display panel, optic-fiber communication components, life technology, and ultra-precision components. All quantitative measurements at nanometre scale should guarantees accurate results and high quality. Laser interferometer is one of most famous nanometre scale devices to be able to measure metre-scale distance with nanometre scale resolution, but it is easily affected by various error causes like geometrical, instrumental and environmental factor. On the other side, capacitive sensor is robust to above error factors, but it is able to measure relatively shorter distance, under $100{\mu}m$, than laser interferometer. New error correction method for laser interferometry using capacitive sensor will be introduced in this paper.

  • PDF

Development and Evaluation of 3-terminal Type Capacitive Sensor for the Diagnosis of Electrical Insulating Oil (전기 절연유 열화진단을 위한 3-단자식 전기용량 센서 개발 및 진단특성 평가)

  • Kim, Ju-Han;Han, Sang-Ok
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.58 no.4
    • /
    • pp.476-482
    • /
    • 2009
  • This paper describes the development of capacitive sensor for the diagnosis of liquid dielectrics, which is widely used as the electrical insulating oil of transformer, circuit breaker, cable and etc. To survey the dielectric properties of the virgin and aged electrical insulating oils, we utilized the highly precise measuring system, using the principle of cross capacitance. The measured properties were used to determine the design factors of the sensor. Then the factors were optimized with the help of computational analysis. To evaluate diagnosis by the sensor, we performed accelerated thermal aging test about electrical insulating oils. The condition of aged specimens were investigated by measurements of relative permittivity i.e. capacitance change by capacitive sensor. And to evaluate the hysteresis characteristics with the change of temperature, we constructed a testing system, which was composed with vacuum drying oven, oil chamber and measuring instruments, such as LCR meter, MUX and so forth. Through the results of this investigation, we confirmed the superior characteristics of the newly developed sensor.

Research on Capacitive Tactile Sensor for Electronic Skin using Natural Rubber and Nitrile Butadiene Rubber

  • Sangmin Ko;Dasom Park;Sangkyun Kim
    • Elastomers and Composites
    • /
    • v.58 no.4
    • /
    • pp.173-178
    • /
    • 2023
  • Recently, there has been a significant focus on the development of flexible and stretchable sensors, driven by advancements in electronic devices and the robotics industry. Among these sensors, tactile sensors stand out as the most actively researched, playing a crucial role in facilitating interaction between humans and electronic devices, particularly in robotics and medical applications. This study specifically involves the manufacturing of a capacitive tactile sensor using a relatively straightforward process and sensor structure. Natural rubber and Nitrile butadiene rubber, commonly employed in the rubber industry, were utilized. The dielectric material in the manufactured tactile sensor possesses a porous structure. Notably, the resulting tactile sensor demonstrated excellent sensitivity, approximately 1%/kPa, and exhibited the capability to detect pressures up to 212 kPa.

Low Noise and Low Power IC Using Opamp Sharing Technique for Capacitive Micro-Sensor Sensing Platform (증폭기 공유 기법을 이용한 저전력 저잡음 용량형 센서용 신호 처리 IC)

  • Park, Yunjong;Kim, Choul-Young;Jung, Bang Chul;Yoo, Hoyoung;Ko, Hyoungho
    • Journal of Sensor Science and Technology
    • /
    • v.26 no.1
    • /
    • pp.60-65
    • /
    • 2017
  • This paper describes the low noise and low power IC using the opamp sharing technique for the capacitive micro-sensor sensing platform. The proposed IC reduces noise using correlated double sampling (CDS) and reduces power consumption using the opamp sharing technique. The IC is designed to be fully programmable, and can be digitally controlled by serial peripheral interface (SPI). The power consumption and the integrated input referred noise are 1.02 mW from a 3.3 V supply voltage and $0.164aF_{RMS}$ with a bandwidth of 400 Hz. The capacitive sensitivity, the input-output linearity and the figure of merits (FoM) are 2.5 mV/fF, 2.46 %FSO, and 8.4, respectively.

Characteristics of Surface Micromachined Capacitive Pressure Sensors for High Temperature Applications (표면 MEMS 기술을 이용한 고온 용량형 압력센서의 특성)

  • Seo, Jeong-Hwan;Noh, Sang-Soo;Kim, Kwang-Ho
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.23 no.4
    • /
    • pp.317-322
    • /
    • 2010
  • This paper reports the fabrication and characterization of surface micromachined poly 3C-SiC capacitive pressure sensors on silicon wafer operable in touch mode and normal mode for high temperature applications. FEM(finite elements method) simulation has been performed to verify the analytical mode. The sensing capacitor of the capacitive pressure sensor is composed of the upper metal and the poly 3C-SiC layer. Measurements have been performed in a temperature range from $25^{\circ}C$ to $500^{\circ}C$. Fabrication process of designed poly 3C-SiC touch mode capacitive pressure sensor was optimized and would be applicable to capacitive pressure sensors that are required high precision and sensitivity at high pressure and temperature.

Evaluation of Diagnosis Properties of Capacitive Sensor about Deteriorated Pattern of Electrical Insulating Oil (전기 절연유의 열화 패턴에 따른 정전용량형 센서의 열화감지특성 평가)

  • Kim, Ju-Han;Kim, Jae-Hoon;Lee, Won-Yeong;Kim, Pil-Hwan;Han, Sang-Ok;Kim, Han-Jun
    • Proceedings of the KIEE Conference
    • /
    • 2004.07c
    • /
    • pp.1829-1831
    • /
    • 2004
  • This paper described the capacitive sensor for the diagnosis of deterioration of electrical insulating oils applying guard-ring type the 3-terminal electrodes. To measure stable capacitance of the sensor and to determine the design factors of the sensor, we utilized computational analysis, FEM software. This capacitive sensor discern the extent of deterioration measuring relative permittivity of electrical insulating oils. The result of measuring numerous sample, mineral oils, as serviced year, we confirmed an increase in relative permittivity of oils. Moreover, we confirmed the superior characteristics of the sensor as a species, aged pattern of oils and operating temperature.

  • PDF

Analysis on the Diagnosis Characteristics of Electrical Insulating Oil for Power Transformer with 3-terminal Capacitive Sensor (3전극형 전기용량 센서를 이용한 변압기 절연유의 열화감지특성 평가)

  • Kim, Ju-Han;Seo, Pan-Seok;Kim, Pil-Hwan;Kim, Myung-Hwan;Park, Hung-Seok;Han, Sang-Ok
    • Proceedings of the KIEE Conference
    • /
    • 2004.11d
    • /
    • pp.89-92
    • /
    • 2004
  • This paper described the capacitive sensor for the diagnosis of deterioration of electrical insulating oils applying guard-ring type the 3-terminal electrodes. To measure stable capacitance of the sensor and to determine the design factors of the sensor, we utilized computational analysis, FEM software. This capacitive sensor discern the extent of deterioration measuring relative permittivity of electrical insulating oils. The result of measuring numerous sample, mineral oils, as serviced year, we confirmed an increase in relative permittivity of oils. Moreover, we confirmed the superior characteristics of the sensor as a species, aged pattern of oils and operating temperature.

  • PDF

Micro-Machined Capacitive Linear Encoder with a Mechanical Guide (마이크로 머시닝으로 제작한 기계적 가이드를 갖는 정전용량 선형 인코더)

  • Kang, Daesil;Moon, Wonkyu
    • Journal of Sensor Science and Technology
    • /
    • v.21 no.6
    • /
    • pp.440-445
    • /
    • 2012
  • Contact-type Linear Encoder-like Capacitive Displacement Sensor (CLECDiS) is a novel displacement sensor which has wide measurable range with high resolution. The sensor, however, is very sensitive to relative rotational alignment between stator and mover of the sensor as well as its displacement. In addition to, there can be some disturbances in the relative rotational alignment, so some noises occur in the sensor's output signal by the disturbances. This negative effect of the high sensitivity may become larger as increasing sensitivity. Therefore, this negative effect of the high sensitivity has to be compensated and reduced to achieve nanometer resolution of the sensor. In this study, a new type capacitive linear encoder with a mechanical guide is presented to reduce the relative rotational alignment problem. The presented method is not only to reduce the alignment problem, but also to assemble the sensor to the stage conveniently. The method is based on a new type CLECDiS that has mechanical guide autonomously. In the presented sensor, when the device is fabricated by micro-machining, the guide-rail is also fabricated on the surface of the sensor. By the direct fabrication of the guide-rail with high precision micro-machining, errors of the guide-rail can be reduced significantly. In addition, a manual yaw alignment is not required to obtain large magnitude of the output signal after the assembly of the sensor and the stage. The sensor movement is going to follow the guide-rail automatically. The prototype sensor was fabricated using the presented method, and we verify the feasibility experimentally.