• Title/Summary/Keyword: Capacitor compensation

Search Result 201, Processing Time 0.026 seconds

Series Voltage Compensation Systems for Voltage Sag by Using an Environmentally Friendly Ultra-capacitor (친환경 Ultra-capacitor에 의한 순시전압강하의 직렬전압보상 시스템)

  • Shon, Jin-Geun;Jeon, Hee-Jong
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.4
    • /
    • pp.763-769
    • /
    • 2009
  • A series voltage compensation(SVC) system is a power-electronics controller that can protect sensitive loads from disturbance in the supply system. Especially, voltage sags are considered the dominant disturbances affecting the power quality. This paper dealt with a system of off-line type voltage sag compensation by using a bi-directional DC/DC converter of environmentally friendly ultra-capacitor. This capacitor is attached to the DC link of SVC through the high-efficiency DC/DC converter in order to compensate the DC link voltage drop during short-term power interruption as voltage sags. Therefore, in this paper, a DC/DC converter to control high-efficiency energy of ultra-capacitor and voltage sag detection algorithm of off-line type SVC systems are newly introduced. According to the results of experimental of prototype system, it is verified that the proposed system has effectiveness of voltage sag compensation using an ultra-capacitor.

A Design of 8-bit Switched-Capacitor Cyclic DAC with Mismatch Compensation of Capacitors (캐패시터 부정합 보정 기능을 가진 8비트 스위치-캐패시터 사이클릭 D/A 변환기 설계)

  • Yang, Sang-Hyeok;Song, Ji-Seop;Kim, Su-Ki;Lee, Kye-Shin;Lee, Yong-Min
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.2
    • /
    • pp.315-319
    • /
    • 2011
  • A switched-capacitor cyclic DAC scheme with mismatch compensation of capacitors is designed. In cyclic DAC, a little error between two capacitors is accumulated every cycle. As a result, the accumulated error influences the final analog output which is wrong data. Therefore, a mismatch compensation technique was proposed and the error can be effectively reduced, which alleviates the matching requirement. In order to verify the operation of the proposed DAC, an 8-bit switched-capacitor cyclic DAC is designed through HSPICE simulation and implemented through magna 0.18um standard CMOS process.

A Topological Transformation and Hierarchical Compensation Capacitor Control in Segmented On-road Charging System for Electrical Vehicles

  • Liu, Han;Tan, Linlin;Huang, Xueliang;Guo, Jinpeng;Yan, Changxin;Wang, Wei
    • Journal of Power Electronics
    • /
    • v.16 no.4
    • /
    • pp.1621-1628
    • /
    • 2016
  • Experiencing power declines when the secondary coil is at the middle position between two primary coils is a serious problem in segmented on-road charging systems with a single energized segmented primary coil. In this paper, the topological transformation of a primary circuit and a hierarchical compensation capacitor control are proposed. Firstly, the corresponding compensation capacitors and receiving powers of different primary structures are deduced under the condition of a fixed frequency. Then the receiving power characteristics as a function of the position variations in systems with a single energized segmented primary coil and those with double segmented primary coils are analyzed comparatively. A topological transformation of the primary circuit and hierarchical compensation capacitor control are further introduced to solve the foregoing problem. Finally, an experimental prototype with the proposed topological transformation and hierarchical compensation capacitor control is carried out. Measured results show that the receiving power is a lot more stable in the movement of the secondary coil. It is a remarkable fact that the receiving power rises from 10.8W to 19.2W at the middle position between the two primary coils. The experimental are in agreement with the theoretical analysis.

Development of On-Line Type Voltage Sag Compensation Systems by Using a Supercapacitor (수퍼커패시터를 이용한 상시가동형 순시전압강하 보상시스템의 개발)

  • Shon, Jin-Geun
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.58 no.2
    • /
    • pp.101-107
    • /
    • 2009
  • This paper deal with development of on-line type voltage sag compensation system using supercapacitor EDLC to solve the voltage sag problems which are considered to be dominant disturbances affecting the power quality. With the wide use of semiconductor devices in electrical equipment, modem-type loads are becoming increasingly sensitive to the voltage sags and the disturbances prove to be costly to industries. Supercapacitor EDLC is employed to compensate dynamically for the voltage sag of system with sensitive loads. This capacitor has higher energy density than the electrolytic capacitor. Also, this capacitor has a lot of advantage such as no maintenance, longer life cycle and faster charge-discharge time than the battery system. Therefore, in this paper, the energy design scheme of supercapacitor and the configuration technique of on-line type voltage sag compensation systems are newly introduced. According to the results of experimental of prototype 5[kVA] system, it is verified that the developed system has effectiveness of voltage sag compensation by using a supercapacitor EDLC.

Design of a Step-Down DC-DC converter with On-chip Capacitor multiplyed Compensation circuit (온칩된 커패시터 채배기법 적용 보상회로를 갖는 DC to DC 벅 변환기 설계)

  • Park, Seung-Chan;Lim, Dong-Kyun;Yoon, Kwang-Sub
    • Proceedings of the IEEK Conference
    • /
    • 2008.06a
    • /
    • pp.537-538
    • /
    • 2008
  • A step-down DC-DC converter with On-chip Compensation for battery-operated portable electronic devices which are designed in 0.18um CMOS standard process. In an effort to improve low load efficiency, this paper proposes the PFM (Pulse Frequency modulation) voltage mode 1MHz switching frequency step-down DC-DC converter with on-chip compensation. Capacitor multiplier method can minimize error amplifier compensation block size by 20%. It allows the compensation block of DC-DC converter be easily integrated on a chip and occupy less layout area. But capacitor multiplier operation reduces DC-DC converter efficiency. As a result, this converter shows maximum efficiency over 87% for the output voltage of 1.8V (input voltage : 3.3V), maximum load current 500mA, and 0.14% output ripple voltage. The total core chip area is $mm^2$.

  • PDF

DC-Link Voltage Balance Control in Three-phase Four-wire Active Power Filters

  • Wang, Yu;Guan, Yuanpeng;Xie, Yunxiang;Liu, Xiang
    • Journal of Power Electronics
    • /
    • v.16 no.5
    • /
    • pp.1928-1938
    • /
    • 2016
  • The three-phase four-wire shunt active power filter (APF) is an effective method to solve the harmonic problem in three-phase four-wire power systems. In addition, it has two possible topologies, a four-leg inverter and a three-leg inverter with a split-capacitor. There are some studies investigating DC-link voltage control in three-phase four-wire APFs. However, when compared to the four-leg inverter topology, maintaining the balance between the DC-link upper and lower capacitor voltages becomes a unique problem in the three-leg inverter with a split-capacitor topology, and previous studies seldom pay attention to this fact. In this paper, the influence of the balance between the two DC-link voltages on the compensation performance, and the influence of the voltage balance controller on the compensation performance, are analyzed. To achieve the balance between the two DC-link capacitor voltages, and to avoid the adverse effect the voltage balance controller has on the APF compensation performance, a new DC-link voltage balance control strategy for the three-phase four-wire split-capacitor APF is proposed. Representative simulation and experimental results are presented to verify the analysis and the proposed DC-link voltage balance control strategy.

Design of monolithic DC-DC Buck converter with on chip soft-start circuit (온칩 시동회로를 갖는 CMOS DC-DC 벅 변환기 설계)

  • Park, Seung-Chan;Lim, Dong-Kyun;Lee, Sang-Min;Yoon, Kwang-Sub
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.7A
    • /
    • pp.568-573
    • /
    • 2009
  • This paper presents a step-down DC-DC converter with On-chip Compensation for battery-operated portable electronic devices which are designed in O.13um CMOS standard process. In an effort to decrease system volume, this paper proposes the on chip compensation circuit using capacitor multiplier method. Capacitor multiplier method can minimize error amplifier's compensation capacitor size by 10%. It allows the compensation block of DC-DC converter be easily integrated on a chip and occupy less layout area. But capacitor multiplier operation reduces DC-DC converter efficiency. As a result, this converter shows maximum efficiency over 87.2% for the output voltage of 1.2V (input voltage : 3.3V), maximum load current 500mA, and 25mA output ripple current. This voltage mode controled buck converter has 1MHz switching frequency.

A Study on the location of Compensation Capacitor and Capacitance in the Concrete Slab Track (콘크리트 슬래브궤도에서 보상 커패시터의 위치 및 전기용량에 대한 연구)

  • Kim, Min-Seok;Lee, Sang-Hyeok;Ko, Jun-Seog;Lee, Jong-Woo;Jo, Su-Ik;Yu, Jin-Young
    • Proceedings of the KSR Conference
    • /
    • 2009.05a
    • /
    • pp.879-891
    • /
    • 2009
  • Impedance of rails is increased by the magnetic coupling between rails and reinforcing bars in the concrete slab track. Currently, the current of track circuit has been compensated by installing the compensation capacitors on track circuit because of increasing the impedance of rails. In case of a rapid transit railway, the compensation capacitors are installed every 20[m] to compensate the current of track circuit in the concrete slab track. Because the interval of one block for a rapid transit railway is as long as 1500[m], the compensation capacitors are installed about the number of 70$\sim$75 on track circuit. However, in case the compensation capacitors are broken over the number of three, it is a problem that the amplitude of current is under standard amplitude of current which is 0.8[A]. In this paper, it was suggested installing a compensation capacitor by using resonance phenomenon on the concrete slab track. We represent the electrical model of track circuit and the four terminal network, calculate the parameters demanded for the electrical model in the concrete slab track. Also, we computed the position and capacitance of the compensation capacitor about 2040[Hz], 2400[Hz], 2760[Hz], 3120[Hz] which currently is the track circuit frequency in the Gyeongbu rapid transit railway and demonstrated the validity of it, using the Matlab and PSpice program.

  • PDF

Effect of R-C Compensation on Switching Regulation of CMOS Low Dropout Regulator

  • Choi, Ikguen;Jeong, Hyeim;Yu, Junho;Kim, Namsoo
    • Transactions on Electrical and Electronic Materials
    • /
    • v.17 no.3
    • /
    • pp.172-177
    • /
    • 2016
  • Miller feedback compensation is introduced in a low dropout regulator (LDO) in order to obtain a capacitor-free regulator and improve the fast transient response. The conventional LDO has a limited bandwidth because of the large-size output capacitor and parasitic gate capacitance in the power MOSFET. In order to obtain a stable frequency response without the output capacitor, LDO is designed with resistor-capacitor (R-C) compensation and this is achieved with a connection between the gain-stage and the power MOS. An R-C compensator is suggested to provide a pole and zero to improve the stability. The proposed LDO is designed with the 0.35 μm CMOS process. Simulation testing shows that the phase margin in the Bode plot indicates a stable response, which is over 100o. In the load regulation, the transient time is within 55 μs when the load current changes from 0.1 to 1 mA.

Ripple Voltage Compensation Instantaneous Follow Controller of Inverter by using Analog Integrator (아날로그 적분기를 이용한 맥동전압 보상형 순시추종 PWM 제어기를 적용한 인버터)

  • 라병훈;이현우;김광태
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.9 no.4
    • /
    • pp.381-389
    • /
    • 2004
  • In this paper, it is suggested that instantaneous compensation PWM control for inverter without the smoothing capacitor Therefore, this inverter system has several advantages. It has small volume and low price to manufacture, decrease trouble rate of inverter, and has power factor correction effect because huge smoothing capacitor-less. And it has compact size control circuit to use analog integrator device. It could make the smoothing capacitor-less inverter for air-blower motor by using the instantaneous compensation PWM controller. This inverter system has small volume and value compare with the conventional VVVF control inverter.