• Title, Summary, Keyword: Carbon/Epoxy

Search Result 786, Processing Time 0.031 seconds

Effects of oil absorption on the wear behaviors of carbon/epoxy woven composites

  • Lee, Jae-H.;Lee, Jae-S.;Rhee, Kyong-Y.
    • Carbon letters
    • /
    • v.12 no.4
    • /
    • pp.249-251
    • /
    • 2011
  • Carbon/epoxy woven composites are prominent wear-resistant materials due to the strength, stiffness, and thermal conductivity of carbon fabric. In this study, the effect of oilabsorption on the wear behaviors of carbon/epoxy woven composites was investigated. Wear tests were performed on dry and fully oil-absorbed carbon/epoxy woven composites. The worn surfaces of the test specimens were examined via scanning electron microscopy to investigate the wear mechanisms of oil-absorbed carbon/epoxy woven composites. It was found that the oil absorption rate was 0.14% when the carbon/epoxy woven composites were fully saturated. In addition, the wear properties of the carbon/epoxy woven composites were found to be affected by oilabsorption. Specifically, the friction coefficients of dry and oil-absorbed carbon/epoxy woven composites were 0.25-0.30 and 0.55-0.6, respectively. The wear loss of the oilabsorbed carbon/epoxy woven composites was $3.52{\times}10^{-2}\;cm^3$, while that of the dry carbon/epoxy woven composites was $3.52{\times}10^{-2}\;cm^3$. SEM results revealed that the higher friction coefficient and wear loss of the oil-absorbed carbon/epoxy woven composites can be attributed to the existence of broken and randomly dispersed fibers due to the weak adhesion forces between the carbon fibers and the epoxy matrix.

An investigation of tribology properties carbon nanotubes reinforced epoxy composites (표면 개질된 탄소나노튜브를 사용한 에폭시 복합재료의 마모특성에 관한 연구)

  • Sulong A.B.;Goak J.C.;Park Joo-Hyuk
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • /
    • pp.663-667
    • /
    • 2005
  • Surface modified carbon nanotubes were applied into the epoxy composites to investigate its tribological property. Carbon nanotubes reinforced epoxy composites were fabricated by casting. Effects to the tribological property of loading concentrations and types of surface modification of carbon nanotubes were investigated under sliding condition using linear reciprocal sliding wear tester. The results show that the small amount of carbon nanotubes into the epoxy exhibited lower weight loss than the pure epoxy. It is concluded that the effect of an enormous aspect ratio of carbon nanotubes surface area which wider than conventional fillers that react as interface for stress transfer. As increased the contents of carbon nanotubes, the weight loss from the wear test was reduced. And the surface modified carbon nanotubes show better tribological property than as produced carbon nanotubes. It is due that a surface modification of carbon nanotubes increases the interfacial bonding between carbon nanotubes and epoxy matrix through chemical bonding. Changes in worn surface morphology are also observed by optical microscope and SEM for investigating wear behaviors. Carbon nanotubes in the epoxy matrix near the surface are exposed, because it becomes the lubricating working film on the worn surface. It reduces the friction and results in the lower surface roughness morphology in the epoxy matrix as increasing the contents of the carbon nanotubes.

  • PDF

Flexural behavior of carbon nanotube-modified epoxy/basalt composites

  • Kim, Man-Tae;Rhee, Kyong-Yop
    • Carbon letters
    • /
    • v.12 no.3
    • /
    • pp.177-179
    • /
    • 2011
  • The use of carbon nanotubes (CNTs) as a reinforcing material in a polymer matrix has increased in various industries. In this study, the flexural behavior of CNT-modified epoxy/basalt (CNT/epoxy/basalt) composites is investigated. The effects of CNT modification with silane on the flexural properties of CNT/epoxy/basalt composites were also examined. Flexural tests were performed using epoxy/basalt, oxidized CNT/epoxy/basalt, and silanized CNT/epoxy/basalt multi-scale composites. After the flexural tests, the fracture surfaces of the specimens were examined via scanning electron microscopy (SEM) to investigate the fracture mechanisms of the CNT/epoxy/basalt multi-scale composites with respect to the CNT modification process. The flexural properties of the epoxy/basalt composites were improved by the addition of CNTs. The flexural modulus and strength of the silane-treated CNT/epoxy/basalt multi-scale composites increased by approximately 54% and 34%, respectively, compared to those of epoxy/basalt composites. A SEM examination of the fracture surfaces revealed that the improvement in the flexural properties of the silane-treated CNT/epoxy/basalt multi-scale composites could be attributed to the improved dispersion of the CNTs in the epoxy.

Energy Absorption Characteristics of the Al/CFRP/GFRP Hybrid Member under Quasi-static Axial Compressive Load (준정적 축 압축하중을 받는 Al/CFRP/GFRP 혼성부재의 에너지흡수 특성)

  • Kim, Sun-Kyu;Heo, Uk;Im, Kwang-Hee;Jung, Jong-An
    • Journal of The Korean Society of Manufacturing Technology Engineers
    • /
    • v.21 no.4
    • /
    • pp.588-592
    • /
    • 2012
  • This study concentrates the effect of hybridisation on the collapse mode and energy absorption for composite cylinders. The static collapse behavior of laminated(Al/CFRP/GFRP) circular-cylindrical composite shell under quasi-static axial compressive load has been investigated experimentally. Eight different hybrids of laminated(Al/CFRP/GFRP) circular-cylindrical composite shell were fabricated by autoclave. Eight types of composites were tested, namely, Al/carbon fiber/epoxy, Al/glass fiber/epoxy, Al/carbon-carbon-glass/epoxy, Al/carbon-glass-carbon/epoxy, Al/carbon-glass-glass/epoxy, Al/glass-glass-carbon/epoxy, Al/glass-carbon-glass/epoxy and Al/glass-carbon-carbon/epoxy. Collpase modes were highly dominated by the effect of hybridisation. The results also showed that the hybrid member with material sequence of Al-glass-carbon-carbon/epoxy exhibited good energy absorption capability.

Effects of Ultraviolet Surface Treatment on Adhesion Strength of Carbon/Epoxy Composite

  • Kim, Jong-Min;Lee, Dai-Gil
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • /
    • pp.15-19
    • /
    • 2002
  • In this work, the surface modification of carbon/epoxy composites was investigated using UV (ultraviolet ray) surface treatment to increase adhesion strength between the carbon/epoxy composites and adhesives. After UV surface treatment, XPS (X-ray photoelectron spectroscopy) tests were performed to analyze the surface characteristics of the carbon/epoxy composites. Comparing adhesion strengths with the surface characteristics, the effects of the surface modification of carbon/epoxy composites by UV surface treatments on the adhesion strengths were investigated.

  • PDF

Effect of Plasma Modification of Woven type Carbon Fibers on the Wear Behavior of Carbon Fiber/Epoxy Composites (평직 탄소섬유의 플라즈마 처리 및 이에 따른 탄소섬유/에폭시 복합재의 마모 특성)

  • Lee, Jae-Seok;Rhee, Kyong-Yop
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.27 no.12
    • /
    • pp.113-118
    • /
    • 2010
  • For a present study, woven type carbon fibers were surface-modified by oxygen plasma to improve adhesive strength between carbon fibers and epoxy. The change of hydrophilic properties by the plasma modification was investigated through the contact angle measurement and the calculation of surface energy of carbon fiber due to the oxygen plasma modification. FESEM and XPS analyses were performed to study the chemical and physical changes on the surface of carbon fibers due to the oxygen plasma modification. Pin-on-disk wear tests were conducted under dry condition using unmodified and plasma-modified carbon/epoxy composites to investigate the effect of plasma modification on the wear behavior of woven type carbon/epoxy composites. The results showed that the friction coefficient and the wear rate of plasma-modified carbon/epoxy composites were lower than those of unmodified carbon/epoxy composites, respectively. XPS analysis showed that new functional group of a carbonyl type was created on the carbon fibers by the $O_2$ plasma treatment, which enhanced adhesive strength between carbon fibers and epoxy, leading to improve wear properties

Modifications of mechanical, thermal, and electrical characteristics of epoxy through dispersion of multi-walled carbon nanotubes in supercritical carbon dioxide

  • Zaidi, M.G.H.;Joshi, S.K.;Kumar, M.;Sharma, D.;Kumar, A.;Alam, S.;Sah, P.L.
    • Carbon letters
    • /
    • v.14 no.4
    • /
    • pp.218-227
    • /
    • 2013
  • A supercritical carbon dioxide (SCC) process of dispersion of multi-walled carbon nanotubes (MWCNTs) into epoxy resin has been developed to achieve MWCNT/epoxy composites (CECs) with improved mechanical, thermal, and electrical properties. The synthesis of CECs has been executed at a MWCNT (phr) concentration ranging from 0.1 to 0.3 into epoxy resin (0.1 mol) at 1800 psi, $90^{\circ}C$, and 1500 rpm over 1 h followed by curing of the MWCNT/epoxy formulations with triethylene tetramine (15 phr). The effect of SCC treatment on the qualitative dispersion of MWCNTs at various concentrations into the epoxy has been investigated through spectra analyses and microscopy. The developed SCC assisted process provides a good dispersion of MWCNTs into the epoxy up to a MWCNT concentration of 0.2. The effects of SCC assisted dispersion at various concentrations of MWCNTs on modification of mechanical, thermal, dynamic mechanical thermal, and tribological properties and the electrical conductivity of CECs have been investigated.

A study on the fracture toughness of seawater-absorbed carbon nanotube/epoxy/basalt composites

  • Kim, Man Tae;Rhee, Kyong Yop;Kim, Hyun Ju;Jung, Dong Ho
    • Carbon letters
    • /
    • v.14 no.3
    • /
    • pp.190-192
    • /
    • 2013
  • It has been demonstrated in a previous study that carbon nanotube (CNT)/epoxy/basalt composites produce better flexural properties than epoxy/basalt composites. In this study, mode I fracture tests were conducted using CNT/epoxy/basalt composites with and without seawater absorption in order to investigate the effect of the seawater absorption on the mode I fracture toughness ($G_{Ic}$) of the CNT/epoxy/basalt composites. The results demonstrated that the compliance of the seawater-absorbed specimen was larger than that of the dry specimen at the same crack length, while the opposite result was obtained for the fracture load. The $G_{Ic}$ value of the seawater-absorbed CNT/epoxy/basalt composites was approximately 20% lower than that of the dry CNT/epoxy/basalt composites.

Mechanical and thermal properties of MWCNT-reinforced epoxy nanocomposites by vacuum assisted resin transfer molding

  • Lee, Si-Eun;Cho, Seho;Lee, Young-Seak
    • Carbon letters
    • /
    • v.15 no.1
    • /
    • pp.32-37
    • /
    • 2014
  • Multi-walled carbon nanotube (MWCNT)/epoxy composites are prepared by a vacuum assisted resin transfer molding (VARTM) method. The mechanical properties, fracture surface morphologies, and thermal stabilities of these nanocomposites are evaluated for epoxy resins with various amounts of MWCNTs. Composites consisting of different amounts of MWCNTs displayed an increase of the work of adhesion between the MWCNTs and the matrix, which improved both the tensile and impact strengths of the composites. The tensile and impact strengths of the MWCNT/epoxy composite improved by 59 and 562% with 0.3 phr of MWCNTs, respectively, compared to the epoxy composite without MWCNTs. Thermal stability of the 0.3 phr MWCNT/epoxy composite increased compared to other epoxy composites with MWCNTs. The enhancement of the mechanical and thermal properties of the MWCNT/epoxy nanocomposites is attributed to improved dispersibility and strong interfacial interaction between the MWCNTs and the epoxy in the composites prepared by VARTM.

The study on the influence of surface cleanness and water soluble salt on corrosion protection of epoxy resin coated carbon steel

  • Shon, MinYoung
    • Corrosion Science and Technology
    • /
    • v.13 no.5
    • /
    • pp.163-169
    • /
    • 2014
  • The corrosion resistance of epoxy-coated carbon steel was evaluated. The carbon steel surface was subjected to different treatment methods such as steel grit blasting and power tool treatment as well as contamination of water soluble salt. To study the effect of the surface treatments and contamination, the topology of the treated surface was observed by confocal microscopy and a pull-off adhesion test was conducted. The corrosion resistance of the epoxy-coated carbon steel was further examined by electrochemical impedance spectroscopy (EIS) combined with immersion test of 3.5 wt% of NaCl solution. Consequently, the surface contamination by sodium chloride with $16mg/m^2$, $48mg/m^2$ and $96mg/m^2$ didn't affect the adhesion strength for current epoxy coated carbon steel and blister and rust were not observed on the surface of epoxy coating contaminated by various concentration of sodium chloride after 20 weeks of immersion in 3.5 wt% NaCl aqueous solutions. In addition, the results of EIS test showed that the epoxy-coated carbon steel treated with steel grit blasting and power tool showed similar corrosion protection performance and surface cleanness such as Sa 3 and Sa 2.5 didn't affect the corrosion protectiveness of epoxy coated carbon steel.