• Title/Summary/Keyword: Carbon Emission Estimation Methodology

Search Result 17, Processing Time 0.027 seconds

Estimation of Carbon Emissions Price Using Big Data Analysis Method (빅데이터 분석기법을 활용한 탄소배출권 가격 예측)

  • Im, Giseong;Park, Sangwon;Jang, Jiyoung;Lee, Minwoo;Han, Seungwoo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2019.11a
    • /
    • pp.50-51
    • /
    • 2019
  • Globally, South Korea is a country that has a lot of $CO_2$ emissions and has steadily increased its total greenhouse gas emissions since the 1990s. With the recent implementation of the carbon emission trading system in Korea, the importance of calculating $CO_2$ emissions of construction equipment is increasing, hence the need for accurate calculation of environmental penalties through allocating carbon emission rights. This study presents a methodology to predict the price of carbon credits using big data analysis method. This methodology is based on correlating and regression analysis of trends in carbon emission prices and search volumes. This study aims to support faster and more accurate budget calculations in the planning of the construction process based on the predicted price of carbon emission rights.

  • PDF

Estimation of Secondary Emissions from Forest Carbon Offset Projects (산림탄소상쇄 사업에 따른 이차적 배출량 산정에 관한 연구)

  • Kim, Young-hwan
    • Journal of Climate Change Research
    • /
    • v.6 no.4
    • /
    • pp.257-265
    • /
    • 2015
  • For estimating a net removal of carbon dioxides from a forest carbon offset project, it is necessary to consider secondary emissions occurred from the use of machineries or vehicles. According to the forest carbon standard in Korea, a default rate (5%) could be applied for estimating secondary emissions of small projects, which provide annual net removals less than or equal to $600tCO_2$, while secondary emissions should be estimated for larger projects with field survey. In this study, we intended to develop a methodology for estimating the secondary emission of a forest carbon project. For this purpose, we analyzed the working process and the carbon emissions of the forest management activities for major tree species in Korea. Based on the developed methodology, we estimated the secondary carbon emission of a reforestation project. The result showed that the secondary carbon emission of a reforestation project was estimated between 0.42% and 1.19 % compared to net removals, that is to say that the current default rate in the forest carbon standard could give an overestimated secondary emission.

A Study on Carbon Emission Credit Acquisition in Domestic Railroad Sector (국내 철도분야 탄소배출권 확보방안 연구)

  • Choi, Yo-Han;Lee, Cheul-Kyu;Kim, Yong-Ki
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.2949-2951
    • /
    • 2011
  • It is expected that domestic railway vehicle operation companies may be subjected to GHG emission reduction when GHG emission system is enforced. This study aimed that reviewing on GHG emission system such as CDM, VCS and KCER, and analysing availability of GHG emission credit acquisition for railroad transportation sector. In order to estimate GHG emission credit, a GHG emission estimation methodology should be developed, which includes GHG emission baseline estimation and GHG emission monitoring method, MRV method and etc. Modal shift project, high speed train technology, straight lining project, mass transportation technology, operation optimization tehcnology and etc. may produce GHG emission credit.

  • PDF

A Study on the Estimation of Greenhouse Gas Using Oyster Shell Recycling for Paper Filler

  • Park, Seung-Chel;Seo, Ran-Sug;Kim, Sung-Hu
    • Journal of Environmental Science International
    • /
    • v.25 no.1
    • /
    • pp.23-29
    • /
    • 2016
  • This study has conducted greenhouse gas emission reduction test as using Oyster-shells originated PCC paper filler compare to non-Oyster shells used PCC. This examination was estimated and calculated in accordance with both IPCC (Intergovernmental Panel on Climate Change) and World Business Council for Sustainable Development (WBSCD). The greenhouse gas emission reduction estimation result indicates that, when oyster shells are recycled and used as paper filler, it reduces $27.97tCO_2\;per\;100\;ton$ of oyster shells. It is greenhouse gas emission $44.27tCO_2$ from PCC production changed to carbon emission reduction when replaced with oyster shell. LNG greenhouse gas emission $16.3tCO_2$ in relation to the pre-treatment with oyster shell per 100 ton is also reflected. As a result, it is assumed that roughly $0.2797tCO_2/oyster\;shell{\cdot}ton$.

Calculation of Basic Unit of Carbon Emissions in Operation and Maintenance Stage of Road Infrastructure (도로시설물 운영 및 유지관리단계의 탄소배출원단위 구축)

  • KWAK, In Ho;KIM, Kun Ho;WIE, Dae Hyung;PARK, Kwang Ho;HWANG, Young Woo
    • Journal of Korean Society of Transportation
    • /
    • v.33 no.3
    • /
    • pp.237-246
    • /
    • 2015
  • Operation and Maintenance in road infrastructure is repetitive carbon emissions activities to preserve the road in its originally constructed condition. In the view of road planning and construction, operation, and maintenance of life cycle, operation and maintenance stage quantification of carbon emissions is very important because it is easily accessible activities to reduce carbon emissions in road infrastructure that existing and new road. However, carbon emissions estimation in operation and maintenance stage is yet to do, because data collection is so hard and carbon emissions estimation methodology is very complicated. In this study, a basic unit of carbon emission in the operation and maintenance stage of the road infrastructure was developed in order to get the quantitative determination of carbon that occurring. Carbon emissions of the Expressway and Common state road was calculated by using the basic unit of carbon emission and application plan of basic unit of carbon emission are presented.

Study on Estimation Methods of Life Cycle GHGs Emission for the Mine Reclamation Project (광해방지사업의 전과정 온실가스 배출량 산정방법에 대한 연구)

  • Kim, Soo-lo;Kwak, In-Ho;Wie, Dae-Hyung;Park, Kwang-ho;Baek, Seung-Han
    • Economic and Environmental Geology
    • /
    • v.54 no.6
    • /
    • pp.733-741
    • /
    • 2021
  • Globally, in accordance with the goals set forth in the 2015 Paris Climate Agreement, each country has established and declared a reduction target for carbon neutrality by 2050. The roadmaps for establishing long-term greenhouse gas emissions development strategies and setting reduction targets have been announced. As the international community accelerates the transition to the net-zero society, 128 countries have declared net-zero by the end of 2020, and the net-zero declaration continues to expand around G20 member states. In December 2020, Korea announced the "2050 Net-zero Strategy" to establish a foundation for simultaneously achieving carbon reduction, economic growth, and improved quality of life for the people through active response to the net-zero, and pursuing policy tasks in stages to do this. Comprehensive carbon management is insufficient due to the lack of comprehensive carbon management due to the departure from the areas of mandatory reduction, such as the GHG energy target management system and the GHG emissions trading offset system implemented to reduce greenhouse gases in Korea. Currently, there is no cases for estimation or calculation of carbon dioxide emissions for the Mine Reclamation projects. It is reviewed the standard methods proposed by domestic and foreign carbon emission calculation methods and proposed appropriate carbon emission estimation methods for the Mine Reclamation projects in this study.

Calculation of Basic Unit of Carbon Emissions in Construction Stage of the Road Infrastructure (도로시설물의 전과정 탄소배출량 산정을 위한 시공단계 탄소배출원단위 구축)

  • Kwak, In-Ho;Kim, Kun-Ho;Cho, Woo-Hyoung;Park, Kwang-Ho;Hwang, Young-Woo
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.37 no.2
    • /
    • pp.107-112
    • /
    • 2015
  • Carbon emissions in construction stage is very high because lots of construction machines and materials are required to be used at a road construction stage. Many researcher carried out application of carbon emissions estimation methodology during the life cycle of road infrastructure in order to reduce greenhouse gas emissions in the road sector. But the calculation of carbon emissions is difficult because data collection is difficult and calculation procedure is complex. In this study, a basic unit of carbon emissions in construction stage of the road infrastructure was developed in order to get the quantitative determination of carbon that occurs. Carbon emissions of the expressway and common state road was calculated by using the basic unit of carbon emissions and application plan of basic unit of carbon emissions are presented.

Correlation Analysis on $CO_2$ Emission and Cost of Energy Resources and Life Cycle Assessment (에너지자원의 이산화탄소 배출량과 비용의 상관관계 분석과 전과정평가)

  • Kim, Heetae;Kim, Eun Chul;Ahn, Tae Kyu
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.153-153
    • /
    • 2010
  • The world is moving towards a post-carbon society and needs clean and renewable energy for sustainable development. There are many methodological approaches which are helping this shift based on analyzed data about energy resources and which focus on limited types of energy including liquid fossil, solid fossil, gaseous fossil, and biomass (e.g. IPCC Guidelines, ISO 14064-1, WRI Protocol, etc.). We should also consider environmental impact (e.g. greenhouse gas emissions, water use, etc.) and the economic cost of the renewable energy to make a better decision. Recently, researchers have addressed the environmental impact of new technologies which include photovoltaics, wind turbines, hydroelectric power, and biofuel. In this work, we analyze the environmental impact with a carbon emission factor to present a correlation between $CO_2$ emission and the cost of energy resources standardized by the energy output. In addition, we reviewed Life Cycle Assessment (LCA) as another methodology. Researchers who are studying energy systems have ignored the impacts of entire energy systems, e.g. the extraction and processing of fossil fuels. In power sector, the assessment should include extraction, processing, and transportation of fuels, building of power plants, production of electricity, and waste disposal. Therefore LCA could be more suitable tool for energy cost and environmental impact estimation.

  • PDF

Is It Possible to Achieve IMO Carbon Emission Reduction Targets at the Current Pace of Technological Progress?

  • Choi, Gun-Woo;Yun, Heesung;Hwang, Soo-Jin
    • Journal of Korea Trade
    • /
    • v.26 no.1
    • /
    • pp.113-125
    • /
    • 2022
  • Purpose - The primary purpose of this study is to verify whether the target set out by the International Maritime Organization (IMO) for reducing carbon emissions from ships can be achieved by quantitatively analyzing the trends in technological advances of fuel oil consumption in the container shipping market. To achieve this purpose, several scenarios are designed considering various options such as eco-friendly fuels, low-speed operation, and the growth in ship size. Design/methodology - The vessel size and speed used in prior studies are utilized to estimate the fuel oil consumption of container ships and the pace of technological progress and Energy Efficiency Design Index (EEDI) regulations are added. A database of 5,260 container ships, as of 2019, is used for multiple linear regression and quantile regression analyses. Findings - The fuel oil consumption of vessels is predominantly affected by their speed, followed by their size, and the annual technological progress is estimated to be 0.57%. As the quantile increases, the influence of ship size and pace of technological progress increases, while the influence of speed and coefficient of EEDI variables decreases. Originality/value - The conservative estimation of carbon emission drawn by a quantitative analysis of the technological progress concerning the fuel efficiency of container vessels shows that it is not possible to achieve IMO targets. Therefore, innovative efforts beyond the current scope of technological progress are required.

Estimation of VOCs Emissions from Small-Scale Surface Coating Facilities in Seoul

  • Jin-Ho, SHIN;Woo-Taeg, KWON
    • Journal of Wellbeing Management and Applied Psychology
    • /
    • v.6 no.1
    • /
    • pp.17-22
    • /
    • 2023
  • Purpose: VOCs (volatile organic compounds) are all the organic compounds that react with solar rays and increase the concentration of ozone in the troposphere and are partially also known as carcinogens. The adsorption using activated carbon is usually applied to remove VOCs. Research design, data and methodology: The 20 places of surface coating facilities were selected to evaluate the emission amount of VOCs in Seoul. In addition, the removal efficiency of VOCs in 25 places of automobile coating facilities was evaluated. Results: The average emission amount of VOCs was 10.903 kg/hr from automobile coating facilities, while 3.520 kg/hr from other surface coating facilities. The removal efficiency in adsorption with the combustion catalytic process has the mean value of 87.9% and the regeneration efficiency of activated carbon has the mean value of 95.0%. Conclusions: The removal efficiency in adsorption with the biofiltration process has the mean value of 89.8% and the regeneration efficiency of activated carbon has the mean value of 94.8%. The removal efficiency in the plasma catalyst process has the mean value of 79.3%.