• Title/Summary/Keyword: Cardioprotective effect

Search Result 57, Processing Time 0.031 seconds

Involvement of Adenosine in Cardioprotective Effect of Catecholamine Preconditioning in Ischemia-Reperfused Heart of Rat

  • Kim, Young-Hoon;Kim, Chan-Hyung;Kim, Gi-Tae;Kim, In-Kyu;Park, Jong-Wan;Kim, Myung-Suk
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.2 no.6
    • /
    • pp.753-761
    • /
    • 1998
  • Preconditioning of a heart with small doses of catecholamines induces a tolerance against the subsequent lethal ischemia. The present study was performed to find a specific receptor pathway involved with the catecholamine preconditioning and to test if adenosine plays a role in this cardioprotective effect. Isolated rat hearts, pretreated with small doses of ${\alpha}-\;or\;{\beta}-adrenergic$ agonists/antagonists, were subjected to 20 minutes ischemia and 20 minutes reperfusion by Langendorff perfusion method. Cardiac mechanical functions, lactate dehydrogenase and adenosine release from the hearts were measured before and after the drug treatments and ischemia. In another series of experiments, adenosine $A_1\;or\;A_2$ receptor blockers were treated prior to administration of adrenergic agonists. Pretreatments of a ${\beta}-agonist,\;isoproterenol(10^{-9}{\sim}10^{-7}\;M)$ markedly improved the post-ischemic mechanical function and reduced the lactate dehydrogenase release. Similar cardioprotective effect was observed with an ?-agonist, phenylephrine pretreatment, but much higher $concentration(10^{-4}\;M)$ was needed to achieve the same degree of cardioprotection. The cardioprotective effects of isoproterenol and phenylephrine pretreatments were blocked by a ${\beta}_1-adrenergic$ receptor antagonist, atenolol, but not by an ${\alpha}_1-antagonist,$ prazosin. Adenosine release from the heart was increased by isoproterenol, and the increase was also blocked by atenolol, but not by prazosin. A selective $A_1-adenosine$ receptor antagonist, 1,3-dipropyl-8-cyclopentyl xanthine (DPCPX) blocked the cardioprotection by isoproterenol pretreatment. These results suggest that catecholamine pretreatment protects rat myocardium against ischemia and reperfusion injury by mediation of ${\beta}_1-adrenergic$ receptor pathway, and that adenosine is involved in this cardioprotective effect.

  • PDF

Cardioprotective effect of Argyreia speciosa (Burm. f) Boj. extracts against Isoproterenol- induced myocardial infarction in rats

  • Thakker, Shalin;Biradar, S.M.;Habbu, P.V.;Mahadevan, K.M.;Thippeswamy, B.S.;Veerapur, V.P.
    • Advances in Traditional Medicine
    • /
    • v.10 no.4
    • /
    • pp.278-287
    • /
    • 2010
  • The present study was undertaken to evaluate the protective effect of ethanol (EtAS), ethyl acetate (EAAS) and aqueous (AQAS) extracts of Argyreia speciosa (AS) roots against Isoproterenol (ISO)-induced myocardial infarction in rats. The animals were exposed to isoproterenol (200 mg/kg. s.c) twice at an interval of 24 hrs. Cardioprotective effect was assessed by observing ECG parameters, serum marker enzymes and histopathology of the heart. Pretreatment of EAAS, and EtAS (200 mg/kg) resulted in a significant (P < 0.001) increase in P wave, QRS complex and R-R interval, whereas heart rate, QT interval and cardiac cycle were maintained near to normal values. EtAS and EAAS showed significant (P < 0.05; P < 0.001) reduction in all the tested diagnostic markers compared to ISO treated group. Histological studies on the structural changes of heart tissue supported the protective activity of AS. The result suggest that treatment of AS prior to ISO has a significant role in protecting the animals from ISO induced myocardial infarction.

Cardiotoxicity and Effect of Benincasae Semen on the Reactive Oxygen Species (활성산소에 의한 심근독성 및 동과의 보호효과에 관한 연구)

  • Yoo Kyo Sang;Son Young Woo;Lee Yang Suk
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.16 no.6
    • /
    • pp.1197-1200
    • /
    • 2002
  • To examine the cardiotoxicity of glucose oxidase(GO) in cultured myocardial cells, cardiotoxicity was measured by MTT assay. Myocardial cells were treated with 1~50 mU/ml GO for 5 hours. The cardioprotective effect of Benincasae Semen(BS) was measured by MTT assay in these cultrures. Cell viability was significantly decreased in dose- and time-dependently after myocardial cells were exposed to 30mU/ml GO for 5 hours. In the cardioprotective effect of BS on the cardiotoxicity induced by GO, BS prevented the cardiotoxicity induced by GO in these cultures. From these results, it suggests that GO had cytotoxic effect in cultured myocardial cells and herb extract, BS showed protective effect on GO-induced cardiotoxicity.

Effects of Myrrha Water Extract on Rat Myocardial Cells in Cultures (몰약 전탕액이 배양 심근세포에 미치는 영향)

  • 권강범;조현익;김구환;김상범;이호섭;황우준;박승택;류도곤
    • The Journal of Korean Medicine
    • /
    • v.21 no.2
    • /
    • pp.79-86
    • /
    • 2000
  • Objectives and Methods : In order to elucidate toxic mechanism of myocardial damage and protective effect of myrrha water extract against cytotoxic effect of xanthine oxidase/hypoxanthine(XO/HX), cardioprotective effect of myrrha water extract was examined by MTT assay, LDH (Lactate Dehydrogenase) activity and heart beating rate after cultured myocardial cells derived from neonatal mouse were treated with various concentration of XO/HX, a free radical. Results : XO/HX induced a decrease of cell viability, an increase in the amount of LDH, and a decrease of heart beating rate on cultured myocardial cells in a dose-dependent manner. In cardioprotective effect of myrrha water extract, it showed a decrease in the amount of LDH and an increase of heart beating rate on cultured myocardial cells damaged by XO/HX. Conclusions : From the above results, it is suggested that XO/HX showed toxic effect in cultured myocardial cells derived from neonatal mouse and that myrrha water extract is very effective in the prevention of XO/HX-induced cardiotoxicity.

  • PDF

KR-32158 protects heart-derived H9c2 cells from oxidative stress-induced cell death

  • Kim, Mi-Jeong;Jung, Yi-Sook;Kim, Sun-Ok;Lee, Dong-Ha;Lim, Hong;Yi, Kyu-Yang;Yoo, Sung-Eun;Lee, Soo-Hwan;Baik, Eun-Joo
    • Proceedings of the PSK Conference
    • /
    • 2003.04a
    • /
    • pp.131-131
    • /
    • 2003
  • A benzopyranyl derivative, KR32158, synthesized as a plausible KATP opener, has been shown to exert cardioprotective effect in vivo myocardial infarction model. Myocardial ischemia, induced by oxidative stress, mental stress and fever, result in artheroscleosis, myocardial infarction and hypertrophy. In this study, we investigated in vitro effect of KR32158 by determining whether KR32158 produce cardioprotective effect against oxidative stress-induced death in heart-derived H9c2 cells. (omitted)

  • PDF

Protective effect of KR-32000 against hypoxia- and oxidative stress-induced cardiac cell death

  • Kim, Mi-Jeong;Yoo, Sung-Eun;Yi, Kiu-Yang;Lee, Sun-Kyung;Lee, Soo-Hwan;Baik, Eun-Joo;Moon, Chang-Hyun;Jung, Yi-Sook
    • Proceedings of the PSK Conference
    • /
    • 2002.10a
    • /
    • pp.297.3-298
    • /
    • 2002
  • A benzopyranyl derivative. KR32000. synthesized as a plausible KATP opener. has been shown to exert cardioprotective effect in vivo myocardial infarct model. In this study. we investigated whether KR32000 can produce cardioprotective effect against hypoxia- and reactive oxygen species(ROS)-induced injury in heart-derived H9c2 cells. Hypoxic injury was induced by incubating cells in anaerobic chamber (glucose-free. serum-free DMEM. 85% N2. 5% CO2. 10% H2) and oxidative stress was induced by buthionine sulfoximine(BSO). (omitted)

  • PDF

Hydrogen sulfide restores cardioprotective effects of remote ischemic preconditioning in aged rats via HIF-1α/Nrf2 signaling pathway

  • Wang, Haixia;Shi, Xin;Cheng, Longlong;Han, Jie;Mu, Jianjun
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.25 no.3
    • /
    • pp.239-249
    • /
    • 2021
  • The present study explored the therapeutic potential of hydrogen sulfide (H2S) in restoring aging-induced loss of cardioprotective effect of remote ischemic preconditioning (RIPC) along with the involvement of signaling pathways. The left hind limb was subjected to four short cycles of ischemia and reperfusion (IR) in young and aged male rats to induce RIPC. The hearts were subjected to IR injury on the Langendorff apparatus after 24 h of RIPC. The measurement of lactate dehydrogenase, creatine kinase and cardiac troponin served to assess the myocardial injury. The levels of H2S, cystathionine β-synthase (CBS), cystathionine γ-lyase (CSE), nuclear factor erythroid 2-related factor 2 (Nrf2), and hypoxia-inducible factor (HIF-1α) were also measured. There was a decrease in cardioprotection in RIPC-subjected old rats in comparison to young rats along with a reduction in the myocardial levels of H2S, CBS, CSE, HIF-1α, and nuclear: cytoplasmic Nrf2 ratio. Supplementation with sodium hydrogen sulfide (NaHS, an H2S donor) and l-cysteine (H2S precursor) restored the cardioprotective actions of RIPC in old hearts. It increased the levels of H2S, HIF-1α, and Nrf2 ratio without affecting CBS and CSE. YC-1 (HIF-1α antagonist) abolished the effects of NaHS and l-cysteine in RIPC-subjected old rats by decreasing the Nrf2 ratio and HIF-1α levels, without altering H2S. The late phase of cardioprotection of RIPC involves an increase in the activity of H2S biosynthetic enzymes, which increases the levels of H2S to upregulate HIF-1α and Nrf2. H2S has the potential to restore aging-induced loss of cardioprotective effects of RIPC by upregulating HIF-1α/Nrf2 signaling.

Hypothermic Preconditioning Lowers the Incidence of Hypothermic Arrest in Neonatal Rat

  • Park, Sung-Sook;Na, Heung-Sik;Nam, Hyun-Jung;Hong, Seung-Kil
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.3 no.2
    • /
    • pp.231-236
    • /
    • 1999
  • This study was performed to examine 1) Whether hypothermic cardiac arrest produces myocardial HSP72 expression; 2) And if, whether it serves to protect the heart against the subsequent hypothermic arrest. In the present study, neonatal rats were placed in an icebath to induce hypothermia. To determine whether hypothermic cardiac arrest produces myocardial HSP72, experimental animals were subjected to 10-min hypothermic insult before the extraction of the heart. The intervals between the insult and extraction were 1 (1 HR), 4 (4 HR), 8 (8 HR), 24 (24 HR) or 72 (72HR) hours. A minimal amount of HSP72 was detected in control, 1 HR and 72 HR groups. In contrast, 8 HR and 24 HR groups showed a significant level of HSP72 expressions. To assess the cardioprotective effect of HSP72 against hypothermic cardiac arrest, we compared the proportion of recovery from the arrest between control and preconditioned (PREC) animals. Control animals were subjected to 20-min hypothermic insult, while PREC group was preconditioned by 10-min hypothermic insult 8 hours before the 20-min test hypothermic insult. Resuscitation rate from cardiac arrest induced by the 20-min hypothermic insult in PREC group was significantly higher than that in controls. These results suggest that the cardioprotective effect of hypothermic preconditioning is associated with an increase in HSP72 expression.

  • PDF