• Title/Summary/Keyword: Carrier Recovery loop

Search Result 24, Processing Time 0.022 seconds

Design of NCO in Carrier recovery loop for QPSK Demodulator (QPSK 복조기를 위한 Carrier recovery loop의 NCO 설계)

  • 하창우;이완범;김형균;김환용
    • Proceedings of the IEEK Conference
    • /
    • 2000.09a
    • /
    • pp.907-910
    • /
    • 2000
  • QPSK 복조기는 위상 오차에 따른 문제점을 극복하기 위해 수신단에서는 반송파의 주파수와 위상을 tracking 하는 Carrier recovery loop부분이 필요하다〔1〕. Carrier recovery loop는 multiplier, arm filter, matched filter, decimator, loop filter, NCO로 구성이 된다〔2〕.기존 Carrier recovery loop의 NCO는 sine과 cosine의 lookup table을 갖는 구조로 되어있어, 전력소모가 크다는 문제점을 가지고 있다. 따라서 본 논문에서는 lookup table을 사용하지 않는 저 전력 구조의 QPSK복조기의 Carrier recovery loop의 NCO를 설계했다.

  • PDF

Performance Evaluation of Joint Blind Equalizer and Carrier Recovery for QAM Signal (QAM 신호를 위한 Blind 등화기 Carrier Recovery 결합에 관한 성능평가)

  • 송재철;최형진
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.19 no.11
    • /
    • pp.2067-2080
    • /
    • 1994
  • Recently, joint blind equalization and carrier recovery for digital mobile transmission system is of growing interest. In this paper, we describe new receiver structure of joint godard blind equalizer and various recovery loop for QAM modulated signal. After a brief review of Godard blind equalizer and MAP estimation Costas loop, Generalized Costas loop, Leclert loop, Angular form loop, we present two kinds of receiver structures for joint blind equalization and carrier recovery. Using a Monto Carlo simulation technique, we can confirm that two kinds of receiver structures operate very well in the steady state.

  • PDF

Design of a 16-QAM Carrier Recovery Loop for Inmarsat M4 System Receiver (Inmarsat M4 시스템 수신기를 위한 16-QAM Carrier Recovery Loop 설계)

  • Jang, Kyung-Doc;Han, Jung-Su;Choi, Hyung-Jin
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.4A
    • /
    • pp.440-449
    • /
    • 2008
  • In this paper, we propose a 16-QAM carrier recovery loop which is suitable for the implementation of Inmarsat M4 system receiver. Because the frequency offset of ${\pm}924\;Hz$ on signal bandwidth 33.6 kHz is recommended in Inmarsat M4 system specification, carrier recovery loop having stable operation in the channel environment with large relative frequency offset is required. the carrier recovery loop which adopts only PLL can't be stable in relatively large frequency offset environment. Therefore, we propose a carrier recovery loop which has stable operation in large relative frequency offset environment for Inmarsat M4 system. The proposed carrier recovery loop employed differential filter-based noncoherent UW detector which is robust to frequency offset, CP-AFC for initial frequency offset acquisition using UW signal, and 16-QAM DD-PLL for phase tracking using data signal to overcome large relative frequency offset and achieve stable carrier recovery performance. Simulation results show that the proposed carrier recovery loop has stable operation and satisfactory performance in large relative frequency offset environment for Inmarsat M4 system.

Design of Carrier Recovery Loop for QPSK Demodulator (QPSK 복조기를 위한 반송파 복구 회로 설계)

  • 하창우;김형균;김환용
    • Proceedings of the IEEK Conference
    • /
    • 2000.11a
    • /
    • pp.85-88
    • /
    • 2000
  • In order to resolve problems according to the phase error in QPSK demodulator of the digital communication systems. The demodulator requires carrier recovery loop which searches for the frequency and phase of the carrier. In this paper the complexity of implementation is reduced by the reduction into half of the number of the multiplier in filter structure of the conventional carrier recovery loop, and as the drawback of NCO of the conventional carrier recovery loop wastes a amount of power for the structure of lookup table , We designed the structure of combinational logic without the lookup table. In the comparison with dynamic power of the proposed NCO, the power of NCO with the lookup table is 175㎼, NCO with the proposed structure is 24.65㎼. As the result, it is recognized that about one eight of loss power is reduced. In the simulation of carrier recovery loop designed QPSK demodulator, it is known that the carrier phase is compensated.

  • PDF

Design of Carrier Recovery Loop in DPLL Structure for QPSK Demodulator Satellite Broadcasting (위성방송용 QPSK 복조기를 위한 DPLL구조의 Carrier Recovery Loop 설계)

  • 하창우;이완범;김형균;김환용
    • Proceedings of the IEEK Conference
    • /
    • 2001.06e
    • /
    • pp.165-168
    • /
    • 2001
  • In this W the complexity of implementation is reduced by the reduction into half of the number of the multiplier in filter structure of the conventional carrier recovery loop, and as the drawback of NCO of the conventional carrier recovery loop wastes a amount of power for the structure of lookup table, We designed the structure of combinational logic without the lookup table. In the comparison with dynamic power of the proposed NCO, the power of NCO with the lookup table is 175${\mu}$W, NCO with the proposed of structure is 24,65${\mu}$W. As if result, it is recognized that about one eight of loss power is reduced In the simulation of carrier recovery loop designed QPSK demodulator, it is known that the carrier phase is compensated.

  • PDF

Design of a Carrier Recovery Loop with Minimum Phase Rotation (Phase Rotation 방지를 위한 Carrier Recovery Loop의 설계)

  • Choi, Han-Jun;Lee, Seung-Jun
    • Journal of the Korean Institute of Telematics and Electronics C
    • /
    • v.36C no.2
    • /
    • pp.62-67
    • /
    • 1999
  • Phase rotational is a practical problem in the implementation of coherent demodulation. Large phase noise may intorduce phase rotation in the demodulator which results in repeated decision errors. This paper presents a simple and yet very efficient technique in building a carrier recovery loop which minimizes the phase rotation by improving the stability of the decision-directed carrier recovery loop. Simulation shows this novel technique improves the performance of the carrier recovery loop as well as stability.

  • PDF

Carrier Recovery Loop for PSK Signal (PSK 신호를 위한 새로운 디지털 Carrier Recovery Loop에 관한 연구)

  • 송재철;최형진
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.30A no.11
    • /
    • pp.1-10
    • /
    • 1993
  • A Study on New Digital In this paper, we propose a new Angular Form Carrier Recovery Loop(AFCR loop) for PSK modulation technique. AF CR loop includes detected angle symbol and Multi Level Hardlimiter. Using zero crossing DPLL, we model 1st 2nd AF CR loop, and also derive SCurve. In order to prove steady state operation of AF CR loop, we evaluate performance of this loop by Monte-Carlo and analytical simulation method. We also compare the performance of AF CR loop to that of other loop in terms of acquisition, S-Curve, and RMS jitter. From the comparison result, we verify that the performance of AF CR loop operates well in steady state.

  • PDF

Study on the Low-Power Carrier Recovery for Digital Satellite Broadcasting Demodulator (DSBD를 위한 저전력 반송파 복원에 관한 연구)

  • Park, Hyoung-Keun;Lee, Seung-Dae
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.11 no.4
    • /
    • pp.773-778
    • /
    • 2007
  • In order to resolve problems with the phase error in QPSK demodulator of the digital satellite broadcasting systems, the demodulator requires carrier recovery loop which searches for the frequency and phase of the carrier. In this paper the complexity of implementation is reduced by the reduction into half of the number of the multiplier in Inter structure of the conventional carrier recovery loop, and as the drawback of NCO of the conventional carrier recovery loop wastes a amount of power for the structure of lookup table, We designed the structure of combinational logic without the lookup table. In the comparison with dynamic power of the proposed NCO, the power of NCO with the lookup table is $175{\mu}W$, NCO with the proposed structure is $24.65{\mu}W$. As the result, it is recognized that about one eight of loss power is reduced. In the simulation of carrier recovery loop designed QPSK demodulator, it is known that the carrier phase is compensated.

Design of Carrier Recovery Loop for Receiving Demodulator in Digital Satellite Broadcasting (디지털 위성방송 수신용 복조기를 위한 반송파 복원 회로 설계)

  • 하창우;이완범;김형균;김환용
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.26 no.11B
    • /
    • pp.1565-1573
    • /
    • 2001
  • In order to resolve problems according to the phase error in QPSK demodulator in the digital satellite broadcasting, the demodulator requires carrier recovery loop which searches for the frequency and phase of the carrier. In this paper the drawback of NCO of the conventional carrier recovery loop is to wastes a amount of power for the structure of Look-up table , we designed the structure of combinational logic without the Look-up table. In the comparison with dynamic power of the proposed NCO, the power of NCO with the Look-up table is 175[${\mu}$W], NCO with the proposed structure is 24.65[${\mu}$W]. As the result, it is recognized that loss power is reduced about one eighth. In the simulation of carrier recovery loop designed QPSK demodulator, it is known that the carrier phase is compensated.

  • PDF

Design and Implementation of Carrier Recovery Loop for Satellite Telemetry and Tracking & Command (위성 관제용 반송파 복원부 설계 및 구현)

  • Lee, Jung-Su;Oh, Chi-Wook;Seo, Gyu-Jae;Oh, Seung-Han;Chae, Jang-Soo;Myung, Noh-Hoon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.39 no.1
    • /
    • pp.56-62
    • /
    • 2011
  • A Satellite transponder is mounted on the Satellite and performs radio communications with the ground station. A Digital transponder compared to The analog transponder is made easy and accurate performance prediction. Also Modulation Scheme, Data Rate, Loop Bandwidth, Modulation Index and etc. can be changed on orbit, by implementing FPGA can reduce the weight and volume. The core technology of digital transponder is Carrier Recovery loop. Dynamic Range, Frequency Tracking Range, Frequency Tracking Rate and Coherent performance are determined by the performance of the Carrier Recovery loop. In this paper, we proposed the structure of Carrier Recovery loop for the Satellite digital transponder, then tested and verified the structure.