• Title/Summary/Keyword: Carrier Redistribution Pulse Width Modulation

Search Result 2, Processing Time 0.054 seconds

An Improved Carrier-based SVPWM Method By the Redistribution of Carrier-wave Using Leg Voltage Redundancies in Generalized Cascaded Multilevel Inverter

  • Kang, Dae-Wook;Lee, Yo-Han;Suh, Bum-Seok;Park, Chang-Ho;Hyun, Dong-Seok
    • Journal of Power Electronics
    • /
    • v.1 no.1
    • /
    • pp.36-47
    • /
    • 2001
  • The carrier-based space vector pulse width modulation(SVPWM), which is considered as highly simple and efficient PWM technology, can be also used in multilevel inverters. The method was originally designed for the two-level inverter and developed to the diode clamped multilevel inverter structure. however it may be noted that it also cause bad switch utilization in cascaded multilevel inverter. This paper introduces an improved carrier-based SVPWM scheme, which is fully suitable for cascaded multilevel inverter topologies because it can achieve the optimized switch utilization through the redistribution of the triangular carrier waves considering leg voltage redundancies while having the advantages of the conventional carrier-based SVPWM. Using simulation and experimental results, the superior performance of new PWM method is shown.

  • PDF

A Voltage Control Technique of Line-Interactive DVR Using 7-Level H-Bridge Inverter (7-레벨 H-Bridge 인버터를 이용한 Line-Interactive DVR의 전압제어)

  • Kang, Dae-Wook;Hyun, Dong-Seok;Lee, Woo-Cheol
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.4
    • /
    • pp.705-715
    • /
    • 2007
  • Recently, the interest on power quality has been hot issue because the equipments cause voltage disturbance and have become more sensitive to the voltage disturbance. Additionally, the reseach on power electronic equipments applying to the high power has been increased. This paper deals with Line-Interactive Dynamic Voltage Restorer(LIDVR) system using 7-Level H-Bridge inverter, which is one of the solutions to compensate the voltage disturbance and to increase the power of equipments. The LIDVR has the following advantages comparing to the DVR with the series injection transformer. It has the power factor near to unity under the condition of normal source voltage, can compensate the harmonic current of the load and the instant interruption, and has the fast response. First, the construction, the operation mode and algebraic modeling of LIDVR are reviewed. And then the voltage control algorithm is proposed to get the sinusoidal load voltage with constant amplitude. Finally, simulation and experiment results verify the proposed LIDVR system.