• Title/Summary/Keyword: Carrier acceleration ramp step test

Search Result 3, Processing Time 0.014 seconds

Threshold Determination of The GPS Carrier Acceleration, Ramp, and Step on the Normal Condition

  • Son, Eunseong;Kim, Koon-Tack;Im, Sung-Hyuck;Heo, Moon Beom
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.4 no.4
    • /
    • pp.195-203
    • /
    • 2015
  • In this study, the carrier acceleration-ramp-step test was applied to GPS carrier phase measurements, and the results were compared and analyzed. In the carrier acceleration-ramp-step test, the acceleration, ramp, and measurements are estimated using 10 consecutive carrier phase measurements for satellites observed at the same time based on the least square method. As for the characteristic of this test, if failure occurs in the measurement, the value jumps significantly compared to the previous result; but it judges that failure has occurred in all the satellites although failure has occurred in one satellite. Therefore, in this study, a method that eliminates a satellite with failure was suggested, and thresholds of the carrier acceleration, ramp, and step were suggested. The evaluation of the failure detection performance of carrier phase measurement using the suggested thresholds showed that failure could be detected when the carrier phase measurement changed abruptly by more than about 0.1 cycles.

Application of the Difference Method in a Fault Test on GPS Carrier Phase Measurements (차분 기법을 적용한 GPS 반송파 위상 측정치 고장 검사)

  • Son, Eunseong;Im, Sung-Hyuck;Kim, Koon-Tack
    • Journal of Advanced Navigation Technology
    • /
    • v.21 no.6
    • /
    • pp.601-607
    • /
    • 2017
  • This study performed fault test on global positoining system (GPS) carrier phase measurements, which is a preprocessing step to generate the positioning correction information based on the global navigation satellite system (GNSS) infrastructure. The existing carrier acceleration ramp step test (CARST) method affects the test result by using the mean value to eliminate the receiver clock error. In this regard, this study applied differencing and compared its results with those of the existing CARST. The fault simulation that applied artificial faults to the actual data found that the fault could be detected independently on each satellite when difference method was applied, and the single difference CARST and the double difference CARST produced similar results. The comparison with the existing method using actual data demonstrated the strengths and weaknesses of satellite and station single difference. Nevertheless, it is our understanding that it would require an additional analysis to determine whether the results were affected by the satellite or receiver clock error.

Quality Monitoring Comparison of Global Positioning System and BeiDou System Received from Global Navigation Satellite System Receiver

  • Son, Eunseong;Im, Sung-Hyuck
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.7 no.4
    • /
    • pp.285-294
    • /
    • 2018
  • In this study, we implemented the data quality monitoring algorithm which is the previous step for real-time Global Navigation Satellite System (GNSS) correction generation and compared Global Positioning System (GPS) and BeiDou System (BDS). Signal Quality Monitoring (SQM), Data QM, and Measurement QM (MQM) that are well known in Ground Based Augmentation System (GBAS) were used for quality monitoring. SQM and Carrier Acceleration Ramp Step Test (CARST) of MQM result were divided by satellite elevation angle and analyzed. The data which are judged as abnormal are removed and presented as Root Mean Square (RMS), standard deviation, average, maximum, and minimum value.