• Title/Summary/Keyword: Caspase-11

Search Result 126, Processing Time 0.026 seconds

A Possible Physiological Role of Caspase-11 During Germinal Center Reaction

  • Kang, Shin-Jung
    • Animal cells and systems
    • /
    • v.12 no.3
    • /
    • pp.127-136
    • /
    • 2008
  • Caspase-11 has been known as a dual regulator of cytokine maturation and apoptosis. Although the role of caspase-11 under pathological conditions has been well documented, its physiological role has not been studied much. In the present study, we investigated a possible physiological function of caspase-11 during immune response. In the absence of caspase-11, immunized spleen displayed increased cellularity and abnormal germinal center structure with disrupted microarchitecture. The rate of cell proliferation and apoptosis in the immunized spleen was not changed in the caspase-11-deficient mice. Furthermore, the caspase-11-deficient peritoneal macrophages showed normal phagocytotic activity. However, caspase-11-/-splenocytes and macrophages showed defective migrating capacity. The dysregulation of cell migration did not seem to be mediated by caspase-3, interleukin-$1{\alpha}$ or interleukin-$1{\beta}$ which acts downstream of caspase-11. These results suggest that a direct regulation of immune cell migration by caspase-11 is critical for the formation of germinal center microarchitecture during immune response. However, humoral immunity in the caspase-11-deficient mice was normal, suggesting the formation of germinal center structure is not essential for the affinity maturation of the antibodies.

Caspase-11 Promoter-GFP Construct as a Dual Reporter of Cytotoxicity and Inflammation

  • Shin, Ki-Soon;Kang, Shin-Jung
    • Animal cells and systems
    • /
    • v.10 no.2
    • /
    • pp.73-77
    • /
    • 2006
  • Caspase-11 has been known as a dual regulator of apoptosis and inflammatory response. An unusual feature of caspase-11 is that its expression is induced by apoptotic or proinflammatory stimuli. Utilizing these unusual features of caspase-11, we have developed a simple and sensitive assay method to screen pro- or anti-apoptotic/inflammatory molecules. To develop this assay method, we generated a reporter construct where GFP expression is regulated by caspase-11 promoter. When several types of cultured cells were transfected with this reporter construct and subsequently treated with various apoptotic or proinflammatory molecules, expression of GFP by the activation of caspase-11 promoter was easily detected by fluorescence microscopy or spectrofluorometry. In addition, a reduction of the GFP fluorescence was detected when an agent reported to suppress caspase-11 induction was applied. These results suggest that our reporter system can be used to screen pro- or anti-apoptotic/inflammatory molecules.

A novel mechanism of Korean Red Ginseng-mediated anti-inflammatory action via targeting caspase-11 non-canonical inflammasome in macrophages

  • Min, Ji-Hyun;Cho, Hui-Jin;Yi, Young-Su
    • Journal of Ginseng Research
    • /
    • v.46 no.5
    • /
    • pp.675-682
    • /
    • 2022
  • Background: Korean Red Ginseng (KRG) was reported to play an anti-inflammatory role, however, previous studies largely focused on the effects of KRG on priming step, the inflammation-preparing step, and the anti-inflammatory effect of KRG on triggering, the inflammation-activating step has been poorly understood. This study demonstrated anti-inflammatory role of KRG in caspase-11 non-canonical inflammasome activation in macrophages during triggering of inflammatory responses. Methods: Caspase-11 non-canonical inflammasome-activated J774A.1 macrophages were established by priming with Pam3CSK4 and triggering with lipopolysaccharide (LPS). Cell viability and pyroptosis were examined by MTT and lactate dehydrogenase (LDH) assays. Nitric oxide (NO)-inhibitory effect of KRG was assessed using a NO production assay. Expression and proteolytic cleavage of proteins were examined by Western blotting analysis. In vivo anti-inflammatory action of KRG was evaluated with the LPS-injected sepsis model in mice. Results: KRG reduced LPS-stimulated NO production in J774A.1 cells and suppressed pyroptosis and IL-1β secretion in caspase-11 non-canonical inflammasome-activated J774A.1 cells. Mechanistic studies demonstrated that KRG suppressed the direct interaction between LPS and caspase-11 and inhibited proteolytic processing of both caspase-11 and gasdermin D in caspase-11 non-canonical inflammasome-activated J774A.1 cells. Furthermore, KRG significantly ameliorated LPS-mediated lethal septic shock in mice. Conclusion: The results demonstrate a novel mechanism of KRG-mediated anti-inflammatory action that operates through targeting the caspase-11 non-canonical inflammasome at triggering step of macrophage-mediated inflammatory response.

The Sanguinarine Apoptosis Induction of Hep3B Human Hepatocellular Carcinoma Cells is Dependent on the Activation of Caspase (Sanguinarine에 의한 Hep3B 인체 간암세포의 apoptosis 유도에 관한 연구)

  • Han, Min Ho;Choi, Sung Hyun;Hong, Su Hyun;Park, Dong Il;Choi, ung Hyun
    • Journal of Life Science
    • /
    • v.27 no.11
    • /
    • pp.1340-1348
    • /
    • 2017
  • Sanguinarine is a benzophenanthridine alkaloid derived from the roots of Sanguinaria canadensis L., which is used for the purpose of treating various diseases. Although studies of anticancer activities have been performed using various cancer cell lines, the phenomenon of inducing apoptosis in cancer cells by using sanguinarine requires more research. Therefore, this study investigated the anti-cancer activities and related mechanisms of sanguinarine used with Hep3B human hepatocellular carcinoma cells in terms of the regulation of apoptosis. Sanguinarine inhibited the proliferation of Hep3B cells in a concentration-dependent manner, which was associated with the induction of apoptosis. Sanguinarine also increased the activity of caspase-3, which is a typical effector caspase, and the activities of caspase-8 and caspase-9, which are key when initiating extrinsic and intrinsic apoptosis pathways, respectively. In addition, sanguinarine increased the expression of death receptor-related genes and pro-apoptotic BAX, which belongs to the Bcl-2 family, while suppressing the expression of anti-apoptotic Bcl-2. Sanguinarine promoted the truncation of Bid and enhanced the release of cytochrome c from the mitochondria to the cytoplasm due to a loss of mitochondrial membrane potential. Furthermore, the reduction of a survival rate that was induced by sanguinarine and the induction of apoptosis disappeared with the inhibition of artificial caspase activity. Therefore, the results of the study indicated that sanguinarine-induced apoptosis in Hep3B cells involves both extrinsic and intrinsic pathways; such apoptosis is a caspase-dependent phenomenon.

Effects of Arsenic Trioxide Alone and in Combination with Bortezomib in Multiple Myeloma RPMI 8266 Cells

  • Elmahi, Aadil Yousif;Niu, Chao;Li, Wei;Li, Dan;Wang, Guan-Jun;Hao, Shan-Shan;Cui, Jiu-Wei
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.11
    • /
    • pp.6469-6473
    • /
    • 2013
  • The aim of this study was to detect the efficiency of arsenic trioxide (ATO) alone or together with bortezomib to inhibit proliferation and induce apoptosis in a multiple myeloma (MM) RPMI 8266 cells. Mechanisms of action were also investigated. RPMI 8266 cells were treated with ATO alone and in combination with bortezomib for 24 hours, and cell viability was assessed by modified MTT. Annexin V-F1TC and PI staining was used to detect the apoptosis rate and cell cycling was investigated by flow cytometry, along with expression of cell surface death receptor-4(DR4) and death receptor-5 (DR5). Western blotting was applied to detect the expression of bcl-2, caspase-3, caspase-8, and caspase-9. As a result, the ATO combined with bortezomib group showed more inhibition of RPMI 8266 cell viability than theATO group. Expression of DR4 and DR5 on the cell surfaces, and the apoptosis rate were increased after treatment by ATO alone or combined with bortezomib. The cells appeared to arrest in G2/M phase after treatment. Expression of bcl-2 was more significantly decreased in the combination group, and that of caspase-3, caspase-8 and caspase-9 was significantly increased as well. Therefore, bortezomib can enhance ATO actions to induce apoptosis in RPMI 8266 cells, with decrease in expression of bcl-2 and increase of caspase-3, caspase-8 and caspase-9 proteins.

Mutation Analysis of the Dimer Forming Domain of the Caspase 8 Gene in Oral Submucous Fibrosis and Squamous Cell Carcinomas

  • Menon, Uthara;Poongodi, V;Raghuram, Pitty Hari;Ashokan, Kannan;Govindarajan, Giri Valanthan Veda;Ramanathan, Arvind
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.11
    • /
    • pp.4589-4592
    • /
    • 2015
  • Background: Missense and frame-shift mutations within the dimer forming domain of the caspase 8 gene have been identified in several cancers. However, the genetic status of this region in precancerous lesions, like oral submucous fibrosis (OSMF), and well differentiated oral squamous cell carcinomas (OSCCs) in patients from southern region of India is not known, and hence the present study was designed to address this issue. Materials and Methods: Genomic DNA isolated from biopsy tissues of thirty one oral submucous fibrosis and twenty five OSCC samples were subjected to PCR amplification with intronic primers flanking exon 7 of the caspase 8 gene. The PCR amplicons were subsequently subjected to direct sequencing to elucidate the status of mutation. Results: Sequence analysis identified a frame-shift and a novel missense mutation in two out of twenty five OSCC samples. The frame-shift mutation was due to a two base pair deletion (c.1225_1226delTG), while the missense mutation was due to substitution of wild type cysteine residue with phenylalanine at codon 426 (C426F). The missense mutation, however, was found to be heterozygous as the wild type C426C codon was also present. None of the OSMF samples carried mutations. Conclusions: The identification of mutations in OSCC lesions but not OSMF suggests that dimer forming domain mutations in caspase 8 may be limited to malignant lesions. The absence of mutations in OSMF also suggests that the samples analyzed in the present study may not have acquired transforming potential. To the best of our knowledge this is the first study to have explored and identified frame-shift and novel missense mutations in OSCC tissue samples.

Acupuncture Stimulation at LI11 Suppresses Seizure and Apoptosis in Hippocampi on an Epilepsy Mouse Model (간질 동물 모델을 이용한 곡지(曲池) 및 족삼리(足三里)의 간질발작 및 해마 신경세포 보호 효과 비교 연구)

  • Lee, Jong Boon;Hwang, Kyoung Min;Yoo, Tae-Won;Bae, Chang-Hwan;Kwon, Sunoh;Kim, Seung-Tae
    • Korean Journal of Acupuncture
    • /
    • v.30 no.1
    • /
    • pp.73-80
    • /
    • 2013
  • Objectives : LI11 has been known to suppress epileptic seizure. Using an mouse epilepsy model, we investigated whether acupuncture stimulation at LI11 can suppress kainic acid(KA)-induced epileptic seizure and apoptosis in the mouse hippocampus. Methods : Eight-week-old male C57/BL6 mice(20~25 g) were given acupuncture at LI11 or ST36 once a day for 3 days. After the last acupuncture stimulations, KA(30 mg/kg) was injected intraperitoneally and the degree of seizure was observed for 90 minutes. Twenty-four hours after KA administration, mice were sacrificed and the neural cell death, astrocyte activation and caspase-3 expression in their hippocampi were investigated. Results : Acupuncture stimulation at LI11 suppressed KA-induced epileptic seizure, neuronal cell death, astrocyte activation and caspase-3 expression. Conclusions : Acupuncture stimulation at LI11 decreases the KA-induced epileptic seizure and protects hippocampal cell death via regulating astrocyte activation and caspase-3 expression.

Expression of Bcl-2 and Caspase-3 Proteins Related to Apoptosis in Human Leukemia K-562 Cells

  • Chang Jeong-Hyun;Kwon Heun-Young
    • Biomedical Science Letters
    • /
    • v.11 no.3
    • /
    • pp.281-287
    • /
    • 2005
  • Although actinomycin D (AMD) is known to induce apoptotic cell death to various cell lines, the mechanism of apoptosis induced by AMD is still unclear. Understanding this mechanism may improve its therapeutic efficacy. The present study has been performed to elucidate expression of Bcl-2 and Caspase-3 proteins related to apoptosis in human leukemia K-562 cells. Five different assays were performed in this study; DNA fragmentation analysis by agarose gel electrophoresis, quantitative assay of fragmented DNA, morphological assessment of apoptotic cells, quantification of apoptosis by annexin V (AV) and propidium iodide (PI) staning, and expression of Bcl-2 and Caspase-3 proteins by the western blot analysis. The number of apoptotic cells and amount of fragmented DNA in this cell line treated with AMD was increased at 6 hour. DNA ladder pattern was also appeared at 6 hour. The expression of Bcl-2 was decreased, and disappeared from 12 hours after AMD treatment. Precursor of Caspase-3 was degraded, and 20 kDa cleavage products were detected. These results suggest that AMD induced apoptosis of K-562 cells is Caspase-3-dependent fashion, and this apoptosis is related to the degradation of Bcl-2 proteins.

  • PDF

Activation of pannexin-1 mediates triglyceride-induced macrophage cell death

  • Jung, Byung Chul;Kim, Sung Hoon;Lim, Jaewon;Kim, Yoon Suk
    • BMB Reports
    • /
    • v.53 no.11
    • /
    • pp.588-593
    • /
    • 2020
  • The accumulation of triglycerides (TGs) in macrophages induces cell death, a risk factor in the pathogenesis of atherosclerosis. We had previously reported that TG-induced macrophage death is triggered by caspase-1 and -2, therefore we investigated the mechanism underlying this phenomenon. We found that potassium efflux is increased in TG-treated THP-1 macrophages and that the inhibition of potassium efflux blocks TG-induced cell death as well as caspase-1 and -2 activation. Furthermore, reducing ATP concentration (known to induce potassium efflux), restored cell viability and caspase-1 and -2 activity. The activation of pannexin-1 (a channel that releases ATP), was increased after TG treatment in THP-1 macrophages. Inhibition of pannexin-1 activity using its inhibitor, probenecid, recovered cell viability and blocked the activation of caspase-1 and -2 in TG-treated macrophages. These results suggest that TG-induced THP-1 macrophage cell death is induced via pannexin-1 activation, which increases extracellular ATP, leading to an increase in potassium efflux.

Hologram Based QSAR Analysis of Caspase-3 Inhibitors

  • Sathya., B
    • Journal of Integrative Natural Science
    • /
    • v.11 no.2
    • /
    • pp.93-100
    • /
    • 2018
  • Caspases, a family of cysteinyl aspartate-specific proteases plays a central role in the regulation and the execution of apoptotic cell death. Caspase-3 has been proven to be an effective target for reducing the amount of cellular and tissue damage because the activation of caspases-3 stimulates a signalling pathway that ultimately leads to the death of the cell. In this study, Hologram based Quantitative Structure Activity Relationship (HQSAR) models was generated on a series of Caspase-3 inhibitors named 3, 4-dihydropyrimidoindolones derivatives. The best HQSAR model was obtained using atoms, bonds, and hydrogen atoms (A/B/H) as fragment distinction parameter using hologram length 61 and 3 components with fragment size of minimum 5 and maximum 8. Significant cross-validated correlation coefficient ($q^2=0.684$) and non cross-validated correlation coefficients ($r^2=0.754$) were obtained. The model was then used to evaluate the eight external test compounds and its $r^2_{pred}$ was found to be 0.559. Contribution map show that presence of pyrrolidine sulfonamide ring and its bulkier substituent's makes big contributions for improving the biological activities of the compounds.