• Title/Summary/Keyword: Catalytic Combustion

Search Result 252, Processing Time 0.031 seconds

Status and perspectives of the advanced catalytic combustion (촉매연소의 신기술 동향)

  • Kang, Sung-Kyu
    • 한국연소학회:학술대회논문집
    • /
    • 2003.12a
    • /
    • pp.299-308
    • /
    • 2003
  • This paper provides a review of the status and of the perspectives of advanced catalytic combustion for ultra clean combustion of gas turbines and for industrial combustors. The development of catalytic materials and their combustion techniques for gas turbines are briefly reported. The fuel-rich approaches to catalytic combustion are mentioned for a new technology of thermal- and fuel-NOx control. The fuel-rich catalytic combustion are also applicable to the combustor of ceramic gas turbine, and to the combustion of biomess and municipal waste sludge. Some extended technologies of combustion synthesis are introduced for the synthesis of carbon nanotube and of Perovskite combustion catalysts

  • PDF

Investigation on Catalytic Combustion of Hydrogen-Air Premixed Gas in 10mm Scale Catalytic Combustor (10mm 스케일 촉매 연소기에서의 수소-공기 예혼합 가스의 연소 현상 관찰)

  • Choi, Won-Young;Kwon, Se-Jin
    • 한국연소학회:학술대회논문집
    • /
    • 2004.11a
    • /
    • pp.181-186
    • /
    • 2004
  • Catalytic combustion is one of the suitable methods which is applicable to micro heat source due to high energy density and no flame quenching. And hydrogen can be oxidized at room temperature with platinum catalyst. So hydrogen-fueled micro catalytic combustor with platinum catalyst can be good and easy-handling heat source for another micro devices. In this work we focused on general catalytic combustion characteristics of hydrogen-air premixed gas in 10mm scale catalytic combustor for the further application to micro scale. Platinum was coated on dense ceramic monolith which can be installed in simple-structured catalytic combustor. We investigated the effect of flow rate, heat loss and platinum percentage in catalyst-coated monolith on catalytic combustion performance by temperature distribution in the combustor. By those results we confirmed catalytic reactivity and estimated reaction area. And we simulated micro scale catalytic reaction by sliced monolith. The results of this work will be important design factors for micro scale catalytic combustor.

  • PDF

Sequential Catalytic Combustion System (순차식 촉매연소 시스템)

  • Yu, Sang-Phil;Song, Kwang-Sup;Ryu, In-Soo;Jeong, Nam-Jo
    • 한국연소학회:학술대회논문집
    • /
    • 2003.05a
    • /
    • pp.153-158
    • /
    • 2003
  • Catalytic Combustion used to be applied to specific conditions because of the characteristics different from flame combustion. However, many researches are focused on widening the applicant range of catalytic combustion with the competences of catalytic combustion. The development of many catalytic combustion appliances is one of the trials to overcome the restrictions of reaction and maximize the merits. In this research, past developments of appliances are depicted and new conceptual system will be introduced - sequential system. Sequential catalytic combustion system is composed of units - existing catalytic heat exchangers. This system is performed with parallel in composition and serially in operation. First, the burden of the preheating can be dramatically reduced. Second, stable operation control is expected. Lastly, Capacity expansion is flexible.

  • PDF

Catalytic Combustion System Stability:Active Control with High Temperature Heat Exchanger (촉매연소 시스템 안정화 : 고온용 열교환기를 이용한 능동제어)

  • Yu, Sang-Phil;Song, Kwang-Sup
    • 한국연소학회:학술대회논문집
    • /
    • 2002.11a
    • /
    • pp.65-69
    • /
    • 2002
  • Catalytic combustion known as one of the traditional oxidation methods of VOC gas is restricted to its applicable fields because of its reaction characteristics. But recently innovative improvement of catalytic endurance makes its applicable range broader from MEMs to industrial power generation. Therefore, control technologies based on the catalytic combustion characteristics are researched and developed dynamically. Especially, the stable control of catalytic combustion is an essential factor in a view of maximizing its efficiency. In this research, the fuel equivalence ratio and the preheating temperature of mixture gas is controlled by catalytic combustion system enhanced in heat transfer with high temperature heat exchanger. As a result, the combustion characteristics of system was investigated, and both passive and active control type were compared and analyzed.

  • PDF

Development of Catalytic Combustion Boiler in Domestic Use (가정용 촉매연소 보일러 개발)

  • Kim, Ho-Yeon;Lee, Seung-Ho;Cho, Won-Ihl;Baek, Young-Soon
    • Proceedings of the KSME Conference
    • /
    • 2001.06d
    • /
    • pp.677-682
    • /
    • 2001
  • Catalytic combustion is the environmental-friendly technology, which has been applied to a variety of areas for industrial and domestic use in recent years. Accordingly, this study performed the development of the catalytic manufacturing technology for the high temperature and of the catalytic combustor in priority, which were aimed to be applied to a commercialized boiler. Paliadium(Pd) of a noble metal was used as a catalyst for the high temperature and supported on alumina($Al_[2}O_{3}$) and zirconia($ZrO_{2}$) in constant weight ratio. Activity of Pd catalysts is compared and analyzed in the catalytic combustion of natural gas. The ratio of $Pd/Al_{2}O_{3}=4$ was found to be better than any other weight ratios in activity and durability. The performance examination of catalysts and of combustion through the plate-type combustor made it possible to be developed the cylindrical-type combustor which has increased combustion area. Catalytic combustion boiler of 25,000 kcal/hr class was also developed, which had the optimum combustion condition at the nozzle of 5.95mm and the orifice of 21mm. This condition was determined through the performance experiments of catalytic combustion boiler to which the cylindrical-type catalytic combustor was applied.

  • PDF

Combustion Characteristics and Design of Fiber Mat Catalytic Burners (매트 형태 연소촉매를 사용하는 촉매버너의 구조와 연소특성)

  • Song, Kwang-Sup;Jung, Nam-Jo;Kim, Hee-Yeon
    • Journal of Energy Engineering
    • /
    • v.17 no.2
    • /
    • pp.100-106
    • /
    • 2008
  • Flameless fiber mat catalytic burners have been known as an effective heat source in industrial drying processes since heat obtained from combustion can be transferred to absorptive body by far-infrared radiation. In order to extend the application of fiber mat catalytic burner, novel fiber mat catalytic burners were manufactured and combustion characteristics of them were investigated. For diffusive catalytic burners, the efficiency of combustion was significantly affected by the installation direction and the temperature of catalytic bed perimeter influenced on the diffusion rate of oxygen which determined the combustion efficiency of catalytic burner. It was seen in premixed catalytic combustion that air content in premixed fuel gas was optimized at slightly higher than theoretical amount of air. Combustion heat released higher than 70% by radiant heat in premixed catalytic combustion likewise diffusive catalytic combustion.

The combustion characteristics of catalytic combustor with preheating heat exchanger (예열용 열 교환식 촉매연소기의 연소특성에 관한 실험)

  • Yu, Sang-Phil;Seo, Yong-Suk;Song, Kwang-Sup;Ryu, In-Su
    • 한국연소학회:학술대회논문집
    • /
    • 2002.06a
    • /
    • pp.79-84
    • /
    • 2002
  • The catalytic heat exchanger was designed which employs the regenerative preheating system of combustion air. The characteristics of the catalytic heat exchanger have been experimentally studied at the various operating parameters. The results showed that the mixture velocity did not affect significantly the performance of catalytic combustor whereas the preheating temperature of combustion air affected significantly the conversion rate. The complete conversion was achieved in the catalyzed honeycomb at a preheating temperature of $370-390^{\circ}C$, a mixture velocity of 0.53 $^{\sim}$ 0.75 m/s and an equivalence ratio of 0.19 $^{\sim}$ 0.27. The heat exchange efficiency of the catalytic heat exchanger appeared to be about 75 % when the air of room temperature was used as a working fluid. The results showed that both the heat balance of the system and the mixture conditions determine its stable catalytic combustion.

  • PDF

Pretreatment Effect of Waste Automotive Catalysts for VOCs Combustion (VOCs 연소를 위한 자동차 폐촉매의 전처리 효과)

  • 문정선
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.16 no.2
    • /
    • pp.191-198
    • /
    • 2000
  • For a characterization of the pretreated waste automotive catalyst the following analysis techniques were applied : EA(Elemental Analysis) BET(Brunaure-Emmett-Teller) and ICP-AES(Inductively Coupled Plasma-Atomic Emission Spectrometry). The combustion activity of waste automotive catalyst was investigated for methanol acetaldehyde and toluene as model VOCs in a fixed bed reactor. carbon deposit amount was decreased with increasing catalyst showed a good catalytic activity for VOCs combustion at 40$0^{\circ}C$. Catalytic activity for methanol acetaldehyde and toluence combustion was very excellent and decreased with mileage. The catalytic activity of a waste automotive catalyst for methanol combustion increased after acid treatment. The acid effect of catalytic activity was summarized as follows: HNO3>HCI>H2SO4>CH3COOH. The waste automotive catalyst regenerated by the pretreatment method might have a excellent catalytic activity for VOCs combustion.

  • PDF

A Numerical Study on the Internal Flow and Combustion Characteristics of the Catalytic Combustor for the 5kW MCFC Power system (5kW 급 MCFC 발전시스템 촉매연소기의 유동 및 연소 특성에 대한 수치적 연구)

  • Kim, Chong-Min;Lee, Youn-Wha;Kim, Man-Young;Kim, Hyung-Gon;Hong, Dong-Jin;Cho, Ju-Hyeong;Kim, Han-Seok;Ahn, Kook-Young
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.3049-3052
    • /
    • 2008
  • MCFC(molten carbonate fuel cell) power generation system is prime candidate for the utilization of fossil based fuels to generate ultra clean power with a high efficiency. In the MCFC power plant system, a combustor performs a role to supply high temperature mixture gases for cathode and heat for reformer by using the stack off-gas of the anode which includes a high concentration of $H_2O$ and $CO_2$. Since a combustor needs to be operated in a very lean condition and to avoid excessive local heating, catalytic combustor is usually used. The catalytic combustion is accomplished by the catalytic chemical reaction between fuel and oxidizer at catalyst surface, different from conventional combustion. In this study, a mathematical model for the prediction of internal flow and catalytic combustion characteristics in the catalytic combustor adopted in the MCFC power plant system is suggested by using the numerical methods. The numerical simulation models are then implemented into the commercial CFD code. After verifying result by comparing with the experimental data and calibrated kinetic parameters of catalytic combustion reaction, a numerical simulation is performed to investigate the variation of flow and combustion characteristics by changing such various parameters as inlet configuration and inlet temperature. The result show that the catalytic combustion can be effectively improved for most of the case by using the perforated plate and subsequent stable catalytic combustion is expected.

  • PDF

Catalytic Combustion System Stability : Active Centre with High Temperature Heat Exchanger (촉매연소 시스템 안정화 : 고온용 열교환기를 이용한 능동제어)

  • 유상필;송광섭;류인수
    • Proceedings of the Korea Society for Energy Engineering kosee Conference
    • /
    • 2002.11a
    • /
    • pp.133-140
    • /
    • 2002
  • Catalytic combustion known as one of the traditional oxidation methods of VOC gas is restricted to its applicable fields because of its reaction characteristics. But recently innovative improvement of catalytic endurance makes its applicable range broader from MEMs to industrial power generation. Therefore, control technologies based on the catalytic combustion characteristics are researched and developed dynamically. Especially, the stable control of catalytic combustion is an essential factor in a view of maximizing its efficiency. In this research, the fuel equivalence ratio and the preheating temperature of mixture gas is controlled by catalytic combustion system enhanced in heat transfer with high temperature heat exchanger. As a result the combustion characteristics of system was investigated, and both passive and active control type were compared and analyzed.

  • PDF