• Title/Summary/Keyword: Catamaran

Search Result 107, Processing Time 0.031 seconds

Wave attenuation effect of the floating breakwater using imaginary boundary element method. (가상경계법에 의한 부소파제의 소파효과)

  • Han, Il-Woo;Yoon, Gil-Su;Lee, Kwi-Joo
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.94-99
    • /
    • 2002
  • 최근 들어 해양개발에 관심이 고조되면서 심해저의 진출이 늘어날 것으로 보이며 또한 환경에 미치는 영향 등으로 부유식 소파제의 이용이 늘어날 것으로 생각된다. 이러한 부유식 소파제는 고정식 방파제의 문제점을 상당히 해소할 수 있는 반면 아직까지 완전히 이해되고 해결되지 못한 부정적인 면도 가지고 있다. 이에 본 연구는 부유식 소파제의 설계시 이용 가능한 정보를 얻고자 부유식 소파제의 형상과 파수에 따른 투과율에 대해 원형과 사각형 그리고 catamaran을 비교하였으며 사각형에 있어서는 계류삭의 위치에 따른 차이점을 비교하였다. 또한 catamaran 부소 파제의 후면에 catamaran 구조물이 있는 경우 즉, Dual catamaran의 운동에 대해서도 고찰하였다.

  • PDF

Development of Maneuvering Simulator for PERESTROIKA Catamaran using Fuzzy Inference Technique

  • Lee, Joon-Tark;Ji, Seok--Jun;Choi, Woo--Jin
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.28 no.2
    • /
    • pp.192-199
    • /
    • 2004
  • Navigation simulators have been used in many marine schools and manne training centers since the early 1960's. But these simulators were very expens~ve and were almost limited only in one engine system. In this paper, a catamaran with twin engine system. controlled by two remote control levers and its economic simulator based on a personal computer shall be introduced. One of the main features of catamaran is to control variously its progressing direction. In the static state, a catamaran can move into all the directions and in the dynamic state, ship can change immediately the heading and speed. Although a good navigator can skillfully operate one engine system, it is difficult to control smoothly the catamaran of twin engine system without any threat for the safety of passengers. Thus. in order to bring up the expert navigators. the development of a simulator which makes the training effective is necessary, Therefore, in this paper, a Fuzzy Inference Technique based Maneuvering Simulator for catamaran with twin engine system was developed. In general. in order to develop a catamaran simulator for effective training, first of all. its mathematical model must be acquired. According to the acquired system modeling. the dynamics of simulator is determined, But the proposed technique can omit a complex and tedious mathematical modeling procedures by using the fuzzy inference, which dependent upon only experiences of an expert and can design an efficient training program for unskillful navigators. This developed simulator was consisted of two fuzzy inference routines and two remote control levers, and was focused on effective training of navigators for the safe maneuvering to avoid a collision in a harbor.

Hull Form Design and Consideration of FASt Catamaran (고속 쌍동선(Fast Catamaran)의 선형설계와 고찰)

  • 박명규;신영균
    • Journal of the Korean Institute of Navigation
    • /
    • v.21 no.2
    • /
    • pp.41-46
    • /
    • 1997
  • In this paper, important parameters of fast catamaran hull form are investigated. Praticularly, length-displacement ratio, demihull spacing, trim and hull form on resistance performance are analyzed. Also, the usefulness of SHIPFLOW program for hull form development is studied. The computed results by using SHIPFLOW program are compared with experimental results in model test.

  • PDF

Computation of Flows Around a High Speed Catamaran

  • Kwag, Seung-Hyun
    • Journal of Mechanical Science and Technology
    • /
    • v.15 no.4
    • /
    • pp.465-472
    • /
    • 2001
  • A numerical study is carried out to clarify the characteristics of flow fields and breaking phenomena around a high speed catamaran hull advancing on calm water. Computations are carried out for Froude numbers between 0.2 and 1.0 and for ratios of the distance between hulls to the catamaran length varying between 0.2 and 0.5 for a mathematically defined Wigley hull. A Navier-Stokes solver which includes the nonlinearities of free surface conditions is employed. Computations are performed in a rectangular grid system based on the Marker & Cell method. For validation, present computation results are compared with existing experimental results. As an application, the results of the displacement catamaran are used for the breaking analysis.

  • PDF

Analysis on Hydrodynamic Force Acting on a Catamaran at Low Speed Using RANS Numerical Method

  • Mai, Thi Loan;Nguyen, Tien Thua;Jeon, Myungjun;Yoon, Hyeon Kyu
    • Journal of Navigation and Port Research
    • /
    • v.44 no.2
    • /
    • pp.53-64
    • /
    • 2020
  • This paper discusses the hydrodynamic characteristics of a catamaran at low speed. In this study, the Delft 372 catamaran model was selected as the target hull to analyze the hydrodynamic characteristics by using the RANS (Reynold-Averaged Navier-Stokes) numerical method. First, the turbulence study and mesh independent study were conducted to select the appropriate method for numerical calculation. The numerical method for the CFD (Computational Fluid Dynamic) calculation was verified by comparing the hydrodynamic force with that obtained experimentally at high speed condition and it rendered a good agreement. Second, the virtual captive model test for a catamaran at low speed was conducted using the verified method. The drift test with drift angle 0-180 degrees was performed and the resulting hydrodynamic forces were compared with the trends of other ship types. Also, the pure rotating test and yaw rotating test proposed by Takashina, (1986) were conducted. The Fourier coefficients obtained from the measured hydrodynamic force were compared with those of other ship types. Conversely, pure sway test and pure yaw test also were simulated to obtain added mass coefficients. By analyzing these results, the hydrodynamic coefficients of the catamaran at low speed were estimated. Finally, the maneuvering simulation in low speed conditions was performed by using the estimated hydrodynamic coefficients.

Effects of demi-hull separation ratios on motion responses of tidal current turbines-loaded catamaran

  • Junianto, Sony;Mukhtasor, Mukhtasor;Prastianto, Rudi Walujo;Jo, Chul Hee
    • Ocean Systems Engineering
    • /
    • v.10 no.1
    • /
    • pp.87-110
    • /
    • 2020
  • Catamaran has recently been a choice to support a typical vertical axis turbine in floating tidal current energy conversion system. However, motion responses associated with the catamaran can reduce the turbines efficiency. The possibility to overcome this problem isto change the catamaran parameter by varying and simulating the demi-hull separations to have lower motion responses. This simulation was undertaken by Computational Fluid Dynamic (CFD) using potential flow analysis. Cases of demi-hull separation were considered, with ratios of demi-hull separation (S) to the breadth of demi-hull (B), S/B of 3.45, 4.95, 6.45, 7.2 and 7.95. In order to compare to the previous works in the literature, the regular wave was set with wave height of 0.8 m. Furthermore, the analysis was carried out by irregular waves with significant wave height, Hs, of about 0.09 to 1.5 m and the wave period, T, of about 1.5 to 6 s or corresponding to the wave frequency, ω, of about 1.1 to 4.2 rad/s. The wave spectrum was derived from the equation of the International Towing Tank Conference (ITTC). For the case of turbines-loaded catamaran under consideration, the new finding is that the least significant amplitude response can be satisfied at the ratio S/B of 7.2. This study indicates that selecting a right choice of demi-hull separation ratio could contribute in reducing motion responses of the tidal current turbines-loaded catamaran.

Anti-slamming bulbous bow and tunnel stern applications on a novel Deep-V catamaran for improved performance

  • Atlar, Mehmet;Seo, Kwangcheol;Sampson, Roderick;Danisman, Devrim Bulent
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.5 no.2
    • /
    • pp.302-312
    • /
    • 2013
  • While displacement type Deep-V mono hulls have superior seakeeping behaviour at speed, catamarans typically have modest behaviour in rough seas. It is therefore a logical progression to combine the superior seakeeping performance of a displacement type Deep-V mono-hull with the high-speed benefits of a catamaran to take the advantages of both hull forms. The displacement Deep-V catamaran concept was developed in Newcastle University and Newcastle University's own multi-purpose research vessel, which was launched in 2011, pushed the design envelope still further with the successful adoption of a novel anti-slamming bulbous bow and tunnel stern for improved efficiency. This paper presents the hullform development of this unique vessel to understand the contribution of the novel bow and stern features on the performance of the Deep-V catamaran. The study is also a further validation of the hull resistance by using advanced numerical analysis methods in conjunction with the model test. An assessment of the numerical predictions of the hull resistance is also made against physical model test results and shows a good agreement between them.

Comparison Study and Structural Analysis to Investigate the Design Rule and Criteria of Catamaran (쌍동선의 설계규정 검토를 위한 규정 비교 및 구조 해석)

  • Kim, Byung-Jong;Kwon, Soo-Yeon;Kim, Sung-Chan;Lee, Jang-Hyun
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.48 no.6
    • /
    • pp.479-489
    • /
    • 2011
  • Leisure boat and yacht should be designed to meet the domestic regulation and international standards as large merchant vessels do. Recently, each countries are encouraged to follow the regulation of International standards organization. Furthermore domestic organization has not yet announced the design rule and regulation for FRP-catamaran yacht design. Therefore, it has been required to make the regulation for domestic situations of FRP-catamaran. This study deals with the structural strength evaluation of 50ft catamaran by using finite element analysis. Design load of the regulation of International standards organization are compared with the regulation of Korea Register of shipping and Lloyd's Register.

A Development of Catamaran type Powerboat Applicable to Leisure and Transportation for a Short Distance in the Sea (해상레저 및 근거리 교통수단으로 활용 가능한 쌍동형 파워보트 개발)

  • 강성욱;임용범;정우철;박찬원
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2001.05a
    • /
    • pp.60-64
    • /
    • 2001
  • This paper describes the development of catamaran type powerboat applicable to leisure and transportation in the sea. Recently, the increasing prosperity of the leisure population has resulted in an increased popularity and need for recreational equipment such as water leisure powerboat. To satisfy the popularity and the need, catamaran type powerboat is developed applicable to leisure and simultaneously, as a means of tranportation for a short distance in the sea through the design using 3-Dimensional modeling method and experiments in circulating wate channel.

  • PDF

Structural analysis of an 38 feet diffusion style for high-speed catamaran yacht (38피트급 보급형 고속 카타마란 요트의 구조해석)

  • Park, Joo-Shin;Ko, Jae-Yong;Lee, Kyoung-Woo;Oh, Woo-Jun
    • Journal of Navigation and Port Research
    • /
    • v.33 no.3
    • /
    • pp.167-174
    • /
    • 2009
  • Recently, design technology of has been required such as catamaran yacht with high-speed according to expand a marine leisure industry. The domestic technical development for design and production of yacht is not actively than Canada, USA, Japan etc. However, with further development of yacht design & technology, it is need to develop a key technology related to increase the value of catamaran yacht. In the present paper, new guideline is suggest for catamaran yacht as like kinds of marine leisure ship in order for fundamental structure design and structural analysis for twin-hulled ship yacht and techniques for structural analysis as sea leisure ship in this research. The class of society has not been proposed formally about regulation and methodology for estimation of strength of small hight-speed craft with satisfying two conditions as noted; length less than 50meters, ratio of length to breadth less than 12. In the present study, we were adopted DNV (Yachts, Design Principles, Design Loads, Hull Structural Design) Rule and KR (FRP rule application guide) for scantling of structural members. Furthermore, ABS rule is used for structural calculation about application of loading conditions for catamaran yacht. This study can be available feedback role to manufacture of 38ft diffusion style for catamaran yacht. It is expected that this study will be a good reference in order to design of catamaran yacht with high-speed.