• Title/Summary/Keyword: Cathode material

Search Result 886, Processing Time 0.04 seconds

A Study on Cathode active material of Li/MnO$_2$ Battery for performance improvement (성능향상을 위한 리튬전지의 Cathode active material에 관한 연구)

  • 김학주;송수정
    • Proceedings of the KAIS Fall Conference
    • /
    • 2001.11a
    • /
    • pp.79-84
    • /
    • 2001
  • 본 논문에서는 리튬전지의 Cathode active material로 CMD(chemical manganese dioxide)를 사용하여 현재 사용중인 EMD(electrolytic manganese dioxide)와 공정 수율 및 특성과 방전 성능을 비교함으로써 새로운 cathode active material.로의 적용 가능성을 확인하기 위함이다.

The Influence of the Cathode Surface State on the Spark Voltage in the Townsend Discharge Domain (Townsend 방전영역의 불꽃전압에 미치는 음극표면상태의 영향)

  • 백용현
    • 전기의세계
    • /
    • v.28 no.1
    • /
    • pp.73-82
    • /
    • 1979
  • There are a great number of papers on the Townsend discharge in gases, and many of them are concerned with the effect of the cathode. It has been regarded that there are two kinds of effect of the electrodes, especially of the cathode; (a) the effect caused by the difference of the cathode material and (b) the effect by the change of the cathode surface state even in the same material. Both of them may change the secondary coefficient following after the change of the work function, and the atter may further change the primary ionization coefficient as foreign atoms on the surface may be dseorbed in sparks to decrease the purity of the gas. Thus the two effects must be investigated independently to study the roles of the cathode in gas discharges. In this report the effect of the cathode material on the sparking voltage is described. The experiment is also carried out under the condition that the desorption of impurities from the cathode be negligible. From these the new correlativity between the work function of the cathode and the sparking voltage is obtained. In addition, the interesting character of the minimum point of the Paschen's curve can be found.

  • PDF

Triphenyl phosphate as an Efficient Electrolyte Additive for Ni-rich NCM Cathode Materials

  • Jung, Kwangeun;Oh, Si Hyoung;Yim, Taeeun
    • Journal of Electrochemical Science and Technology
    • /
    • v.12 no.1
    • /
    • pp.67-73
    • /
    • 2021
  • Nickel-rich lithium nickel-cobalt-manganese oxides (NCM) are viewed as promising cathode materials for lithium-ion batteries (LIBs); however, their poor cycling performance at high temperature is a critical hurdle preventing expansion of their applications. We propose the use of a functional electrolyte additive, triphenyl phosphate (TPPa), which can form an effective cathode-electrolyte interphase (CEI) layer on the surface of Ni-rich NCM cathode material by electrochemical reactions. Linear sweep voltammetry confirms that the TPPa additive is electrochemically oxidized at around 4.83 V (vs. Li/Li+) and it participates in the formation of a CEI layer on the surface of NCM811 cathode material. During high temperature cycling, TPPa greatly improves the cycling performance of NCM811 cathode material, as a cell cycled with TPPa-containing electrolyte exhibits a retention (133.7 mA h g-1) of 63.5%, while a cell cycled with standard electrolyte shows poor cycling retention (51.3%, 108.3 mA h g-1). Further systematic analyses on recovered NCM811 cathodes demonstrate the effectiveness of the TPPa-based CEI layer in the cell, as electrolyte decomposition is suppressed in the cell cycled with TPPa-containing electrolyte. This confirms that TPPa is effective at increasing the surface stability of NCM811 cathode material because the TPPa-initiated POx-based CEI layer prevents electrolyte decomposition in the cell even at high temperatures.

Designing of a Novel Core-Shell-Structured Co-free Cathode Material with Enhanced Thermal and Structural Stability for Lithium Ion Batteries

  • Shin, Ji-Woong;Nam, Yun-Chae;Son, Jong-Tae
    • Journal of the Korean Electrochemical Society
    • /
    • v.22 no.4
    • /
    • pp.172-176
    • /
    • 2019
  • The first commercialized cathode material, $LiCoO_2$, suffers from disadvantages such as high cost and toxicity and also possesses safety problems. The nickel-rich $LiNi_{0.9}Mn_{0.1}O_2$ cathode material, used as an alternative to $LiCoO_2$, has highly reversible capacity and high energy density. So, the nickel-rich $LiNi_{0.9}Mn_{0.1}O_2$ cathode material is widely used as an alternative to $LiCoO_2$ due to its highly reversible capacity and high energy density. However, $LiNi_{0.9}Mn_{0.1}O_2$ has several disadvantages as well, such as poor cycle performance and poor thermal instability. To address these problems, we synthesized a new material, $LiNi_{0.5}Mn_{0.5}O_2$, as a shell on the surface of a core to suppress the surface degradation. The new material showed high structural and thermal stabilities and could also maintain a high capacity. The capacity retention of the core-shell cathode (87.7%) was better than that of the core cathode (76.9%) after 50 cycles. Analysis using differential scanning calorimetry revealed that the heat generation in the core-shell cathode ($65.9Jg^{-1}$) was lower than that in the core cathode ($559.7Jg^{-1}$).

The influence of cathode material on the stability of organic photovoltaics (Cathode material에 따른 organic photovoltaics 안정성의 영향)

  • Park, Jun-Ki;Kim, Yong-Hoon;Han, Jeong-In
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.1266-1267
    • /
    • 2011
  • We studied the influence of cathode material on the stability of organic phtovoltaics (OPVs). OPVs with LiF/Al and Ag/Ca/Ag cathode were fabricated and the stability were evaluated. The sample with LiF/Al cathode showed efficiency degradation from 2.42% to 2.04% during 50 days. On the other hand, the sample with Ag/Ca/Ag cathode showed more steeper efficiency degradation from 2.38% to 0.80% during 50 days. The different of degradation can be attributed to a larger increase of series resistance ($R_s$) in Ag/Ca/Ag cathode sample.

  • PDF

Recovery of Rare Metals from the Waste Secondary Lithium Ion Battery Cathode Active Materials Using Lactic Acid and Oxalic acid (젖산과 옥살산을 이용한 폐 이차 리튬이온 전지 양극 활물질로부터 희유금속들의 회수)

  • Kim, Younjung;Han, Ji Sun;Choi, Sik Young;Oh, In-Gyung;Hong, Yong Pyo;Ryoo, Keon Sang
    • Journal of the Korean Chemical Society
    • /
    • v.63 no.6
    • /
    • pp.446-452
    • /
    • 2019
  • We have developed a method that can leach Co, Mn, and Ni in the cathode active material safely using lactic acid. When cathode active material was leached by lactic acid, lactic acid showed the highest efficiency at 2 N than 1 N and above 4 N concentration. When the cathode active material was added incrementally into the solution of lactic acid, the maximum solubility was 30 g/L at 2 N concentration. Oxalic acid was added in the solution of lactic acid and it showed that rare metals represent the most economical recovery efficiency at 4 g/L. Based on this study, it was found that the optimal condition for recovery of rare metals from cathode active material is oxalic acid : cathode active material = 7 : 1 as a ratio of weight. In addition, it was observed that the precipitate produced by oxalic acid is a polynuclear crystalline material bonded with 3 components of Co, Ni, and Mn.

Thin films made by magnetron sputtering cathode with wide target erosion (고효율 마그네트론 스퍼트링 캐소드의 설계 및 박막 제작 특성)

  • Park, Jang-Sick;Lee, Won-Geon;Jung, Min-Gi;Park, Lee-Soon;An, Chang-Ku
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.365-366
    • /
    • 2007
  • High quality cathode with high deposition rate of thin films and long target life time is required for manufacturing TFT-LCD and semiconductor. We developed WV(wide view) sputtering cathode with wide erosion area and high deposition rate. Ti thin film thickness variation in WV cathode is below 5% for 380 kWh target life time. Al thin film thickness using normal cathode is decreased about 20%. By using WV cathode, target using efficiency was improved 40%. in comparison with normal cathode.

  • PDF

Characterization of (Co/Nb)-coated NiO as a Cathode Material for Molten Carbonate Fuel Cells (코발트와 나이오븀이 코팅된 NiO 용융탄산염 연료전지 양극물질 특성 연구)

  • Choi, Hee-Seon;Yi, Cheol-Woo;Kim, Keon
    • Journal of the Korean Electrochemical Society
    • /
    • v.13 no.3
    • /
    • pp.203-210
    • /
    • 2010
  • NiO is commonly used as the cathode for the molten carbonate fuel cell due to its stability and high electrical conductivity in molten carbonates and oxygen atmosphere. However, long-term operation of MCFC has a serious problem which is the degradation of cathode material, the so-called Ni dissolution. In the present study, we have attempted to synthesize a new alternative cathode material as Co/Nb-coated NiO cathode. The results obtained in this study suggest that the Co/Nb-coated NiO cathode can be utilized as having lower dissolution and higher cell performance than those of the pure NiO cathode.

The Effects of Li-La-Ti-O Coating on the Properties of Li[Ni0.3Co0.4Mn0.3]O2 Cathode Material (Li[Ni0.3Co0.4Mn0.3]O2 양극물질의 Li-La-Ti-O코팅 효과)

  • Lee, Hye-Jin;Yun, Su-Hyun;Park, Bo-Gun;Ryu, Jea-Hyeok;Kim, Kwan-Su;Kim, Seuk-Buom;Park, Yong-Joon
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.22 no.10
    • /
    • pp.890-896
    • /
    • 2009
  • Li(Ni, Co, Mn)$O_2$ has been known as one of the most promising cathode materials for lithium secondary batteries. However, it has some problems to overcome for commercialization such as inferior rate capability and unstable thermal stability. In order to address these problems, surface modification of cathode materials by coating has been investigated. In the coating techniques, selection of coating material is a key factor of obtaining enhanced properties of cathode materials. In this work, we introduced solid electrolyte (Li-La-Ti-O) as a coating material on the surface of $Li[Ni_{0.3}Co_{0.4}Mn_{0.3}]O_2$ cathode. Specially, we focused on a rate performance of Li-La-Ti-O coated $Li[Ni_{0.3}Co_{0.4}Mn_{0.3}]O_2$ cathode. Both bare and Li-La-Ti-O 2 wt.% coated sample showed similar discharge capacity at 0.5C rate. However, as the increase of charge-discharge rate to 3C, the coated samples displayed better discharge capacity and cyclic performance than those of bare sample.

Measurement of Optogalvanic Signal in Hollow Cathode Discharge Tube (Hollow Cathode Discharge Tube에서의 광검류 신호 측정)

  • Lee, Jun-Hoi;Yoon, Man-Young;Kim, Song-Kang
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.07b
    • /
    • pp.874-877
    • /
    • 2002
  • The optogalvanic signals were measured using hollow cathode discharge tube with argon as buffer gas at change of discharge currents. A change of ionization rate due to electron collision causes an increase or decrease of the electric conductivity. This change in electric conductivity generates the optogalvanic signal. We conclude that optogalvanic signal has close relation with the lowest metastable atoms density at low current.

  • PDF