• Title/Summary/Keyword: Cathode pressure

Search Result 5, Processing Time 0.136 seconds

Modeling of PEM Fuel Cell System-Sensitivity Analysis of System Efficiency with Different Main Operating Parameters of Automotive Fuel Cell System (PEM 연료전지 시스템 모델링-자동차용 연료전지 시스템의 주요 작동 변수 변경에 따른 시스템 효율 민감도 분석)

  • KIM, HAN-SANG;KANG, BYUNGGIL;WON, KWONSANG
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.30 no.5
    • /
    • pp.401-410
    • /
    • 2019
  • The operating conditions greatly impact the efficiency and performance of polymer electrolyte membrane (PEM) fuel cell systems and must be properly managed to ensure better performance and efficiency. In particular, small variations in operating conditions interact with each other and affect the performance and efficiency of PEM fuel cell systems. Thus, a systematic study is needed to understand how small changes in operating conditions affect the system performance and efficiency. In this paper, an automotive fuel cell system (including cell stack and balance of plant [BOP]) with a turbo-blower was modeled using MATLAB/Simulink platform and the sensitivity analyses of main operating parameters were performed using the developed system model. Effects of small variations in four main parameters (stack temperature, cathode air stoichiometry, cathode pressure, and cathode relative humidity) on the system efficiency were investigated. The results show that cathode pressure has the greatest potential impact on the sensitivity of fuel cell system efficiency. It is expected that this study can be used as a basic guidance to understand the importance of achieving accurate control of the fuel cell operating conditions for the robust operation of automotive PEM fuel cell systems.

Dynamic Analysis of PEM fuel cell system (PEM 연료전지시스템의 동특성 해석)

  • Kim Beomsoo;Jeon Soonil;Lim Wonsik;Park Yeong-il
    • 한국신재생에너지학회:학술대회논문집
    • /
    • /
    • pp.353-356
    • /
    • 2005
  • We developed a dynamic model of PEM fuel cell system which can analyze its transient response to dynamic load current. System components such as compressor, air cooler, humidifier, and stack were modeled based on their dynamic equations and performance maps by using Matlab Simulink platform. Through this simulation model, dynamic characteristics of fuel cell system including oxygen excess rat io, stack voltage, and system efficiency were shown. In addition to that, we briefly analyzed the humidity effect on cathode pressure and system efficiency, expecting that this model can be further used to optimize fuel cell system parameters just like operating pressure and temperature, humidity and oxygen excess ratio.

  • PDF

Observer Based Nonlinear State Feedback Control of PEM Fuel Cell Systems

  • Kim, Eung-Seok
    • Journal of Electrical Engineering and Technology
    • /
    • v.7 no.6
    • /
    • pp.891-897
    • /
    • 2012
  • In this paper, the observer based nonlinear state feedback controller has been developed to control the pressures of the oxygen and the hydrogen in the PEM(Proton Exchange Membrane) fuel cell system. Nonlinear model of the PEM fuel cell system was introduced to study the design problems of the state observer and model based controller. A cascade observer using the filtering technique was used to estimate the pressure derivatives of the cathode and the anode in the system. In order to estimate the pressures of the cathode and the anode, the sliding mode observer was designed by using these pressure derivatives. To estimate the oxygen pressure and the hydrogen pressure in the system, the nonlinear state observer was designed by using the cathode pressure estimates and the anode it. These results will be very useful to design the state feedback controller. The validity of the proposed observers and the controller has been investigated by using the Lyapunov's stability analysis strategy.

Characterization of Nitrogen Gas Crossover in PEM Fuel Cell Stacks (고분자 연료전지 스택에서 질소 크로스오버 특성에 관한 연구)

  • Baik, Kyung-Don;Kim, Min-Soo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.33 no.3
    • /
    • pp.207-214
    • /
    • 2009
  • Crossover of nitrogen from cathode to anode is inevitable in typical membranes used in PEM fuel cells. This crossovered nitrogen normally accumulates in the hydrogen recirculation system at anode side channels. Excessive buildup of nitrogen in the anode side lowers the relative hydrogen concentration and finally affects the performance of fuel cell stack. So it is very important to analysis the nitrogen gas crossover at various operating conditions. In this study, characterization of nitrogen gas crossover in PEM fuel cell stack was investigated. The mass spectroscopy (MS) has been applied to measure the amount of the crossovered nitrogen gas at the anode exit. Results show that nitrogen gas crossover rate was affected by current density, anode and cathode stoichiometric ratio and operating pressure. Current density, anode stoichiometric ratio and anode operating pressure do not affect nitrogen crossover rate but anode exit concentration of nitrogen. Cathode pressure and stoichiometric ratio largely affect the nitrogen crossover rate.

Analyses of Larg Cell Area MCFC System Dynamics (대면적 용융탄산염 연료전지 시스템 동특성 분석)

  • 강병삼;고준호;이충곤;임희천
    • Journal of Energy Engineering
    • /
    • v.8 no.4
    • /
    • pp.592-604
    • /
    • 1999
  • The steady state and dynamic characteristics of large cell area MCFC stacks were analyzed to solve the problems such as temperature difference generated in stacks and pressure difference between anode and cathode. Manipulated variables (current density, duel utilization rate, oxidant utilization rate) and controlled variables (temperature difference, anode and cathode pressure difference) which had an important effect on the MCFC stack performance were determined using operation results of two types of MCFC stacks (5kW (3,000 $\textrm{cm}^2$, 20 ea). 3kW (6,000 $\textrm{cm}^2$, 5ea)). The stability and transfer function representing system dynamics were obtained by steady state gain rate which showed the relative change between MVs and CVs. The transfer function was a 3$\times$3 matrix and a typical first order system without time delay. The optimal operating condition of large cell area MCFC stacks could be determined by analyzing dynamic characteristics. In case of a 5 kW MCFC stack, pressurized operation with recycle flow should be used to control the outlet temperature less than 68$0^{\circ}C$ and to control the MCFC system effectively. MIMO control or decoupler should be used to remove the interaction between MVs and CVs. This result will be used as important data in determining the control structure design and operation mode of large cell area MCFC systems in the future.

  • PDF