• Title/Summary/Keyword: Cathode-electrolyte interphase

Search Result 16, Processing Time 0.035 seconds

Triallyl Borate as an Effective Separator/Cathode Interphase Modifier for Lithium-ion Batteries

  • Ha Neul Kim;Hye Rim Lee;Taeeun Yim
    • Journal of Electrochemical Science and Technology
    • /
    • v.14 no.3
    • /
    • pp.272-282
    • /
    • 2023
  • Ni-rich layered oxides cathode has recently gained attention as an advanced cathode material due to their applicable energy density. However, as the Ni component in the layered site is increased, the high reactivity of Ni4+ results in parasitic reaction associated with decomposing electrolyte, which leads to a rapid decreasing the lifespan of the cell. The electrolyte additive triallyl borate (TAB) improves interfacial stability, leading to a stable cathode-electrolyte interphase (CEI) layer on the LNCM83 cathode. A multi-functionalized TAB additive can produce a uniformly distributed CEI layer via electrochemical oxidation, which implies an increase in long-term cycling performance. After 100 cycles at elevated temperature, the cell tested by 0.75 TAB retained 88.3% of its retention ratio, whereas the cell performed by TAB-free electrolyte retained 64.1% of its retention. Once the TAB additive formed CEI layers on the LNCM83 cathode, it inhibited the decomposition of carbonate-based solvents species in addition to the dissolution of transition metal components from the cathode. The addition of TAB to LNCM83 cathode material is believed to be a promising way to increase the electrochemical performance.

Development of Advanced Polymeric Binders for High Voltage LiNi0.5Mn1.5O4 cathodes in Lithium-ion batteries (고전압 LiNi0.5Mn1.5O4 양극 고성능 바인더 개발 연구)

  • Dae Hui Yun;Sunghun Choi
    • Journal of Industrial Technology
    • /
    • v.43 no.1
    • /
    • pp.43-48
    • /
    • 2023
  • Spinel LiNi0.5Mn1.5O4 (LNMO) has been considered as one of most promising cathode material, because of its low-cost and competitive energy density. However, 4.7V vs. Li/Li+ of high operating potential facilitates electrolyte degradation on cathode-electrolyte interface during charge-discharge process. In particular, commercial polyvinylidene fluoride (PVDF) is not sutaible for LNMO cathode binder because its weak van der waals force induces thick and non-uniform coverage on the cathode surface. In this review, we study high performance binders for LNMO cathode, which forms uniform coating layer to prevent direct contact between electrolyte and LNMO particle as well as modifying high quality cathode electrolyte interphase, improved cell performace.

Solid-Electrolyte Interphase in the Spinel Cathode Exposed to Carbonate Electrolyte in Li-Ion Battery Application: An ab-initio Study

  • Choe, Dae-Hyeon;Gang, Jun-Hui;Han, Byeong-Chan
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2017.05a
    • /
    • pp.169-169
    • /
    • 2017
  • Due to key roles for the electrochemical stability and charge capacity the solid-electrolyte interphase (SEI) has been extensively studied in anodes of a Li-ion battery cell. There is, however, few of investigation for cathodes. Using first-principles based calculations we describe atomic-level process of the SEI layer formation at the interface of a carbonate electrolyte and $LiMn_2O_4$ spinel cathode. Furthermore, using beyond the conventional density functional theory (DFT+U) calculations we examine the work function of the cathode and frontier orbitals of the electrolyte. Based on the results we propose that proton transfer at the interface is an essential mechanism initiating the SEI layer formation in the $LiMn_2O_4$. Our results can guide a design concept for stable and high capacity Li-ion battery cell through screening an optimum electrolyte fine-tuned energy band alignment for a given cathode.

  • PDF

First-principles Study on the Formation of Solid-Electrolyte Interphase on the LiMn2O4 Cathode in Li-Ion Batteries (제일원리 전산모사를 통한 리튬 이온 전지의 LiMn2O4 전극-전해질 계면 반응 분석)

  • Choe, Dae-Hyeon;Gang, Jun-Hui;Han, Byeong-Chan
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2016.11a
    • /
    • pp.97-97
    • /
    • 2016
  • Development of advanced Li-ion battery cells with high durability is critical for safe operation, especially in applications to electric vehicles and portable electronic devices. Understanding fundamental mechanism on the formation of a solid-electrolyte interphase (SEI) layer, which plays a substantial role in the electrochemical stability of the Li-ion battery, in a cathode was rarely reported unlike in an anode. Using first-principles density functional theory (DFT) calculations and ab-initio molecular dynamic (AIMD) simulations we demonstrate atomic-level process on the generation of the SEI layer at the interface of a carbonate-based electrolyte and a spinel $LiMn_2O_4$ cathode. To accomplish the object we calculate the energy band alignment between the work function of the cathode and frontier orbitals of the electrolyte. We figure out that a proton abstraction from the carbonate-based electrolyte is a critical step for the initiation of an SEI layer formation. Our results can provide a design concept for stable Li-ion batteries by optimizing electrolytes to form proper SEI layers.

  • PDF

Triphenyl phosphate as an Efficient Electrolyte Additive for Ni-rich NCM Cathode Materials

  • Jung, Kwangeun;Oh, Si Hyoung;Yim, Taeeun
    • Journal of Electrochemical Science and Technology
    • /
    • v.12 no.1
    • /
    • pp.67-73
    • /
    • 2021
  • Nickel-rich lithium nickel-cobalt-manganese oxides (NCM) are viewed as promising cathode materials for lithium-ion batteries (LIBs); however, their poor cycling performance at high temperature is a critical hurdle preventing expansion of their applications. We propose the use of a functional electrolyte additive, triphenyl phosphate (TPPa), which can form an effective cathode-electrolyte interphase (CEI) layer on the surface of Ni-rich NCM cathode material by electrochemical reactions. Linear sweep voltammetry confirms that the TPPa additive is electrochemically oxidized at around 4.83 V (vs. Li/Li+) and it participates in the formation of a CEI layer on the surface of NCM811 cathode material. During high temperature cycling, TPPa greatly improves the cycling performance of NCM811 cathode material, as a cell cycled with TPPa-containing electrolyte exhibits a retention (133.7 mA h g-1) of 63.5%, while a cell cycled with standard electrolyte shows poor cycling retention (51.3%, 108.3 mA h g-1). Further systematic analyses on recovered NCM811 cathodes demonstrate the effectiveness of the TPPa-based CEI layer in the cell, as electrolyte decomposition is suppressed in the cell cycled with TPPa-containing electrolyte. This confirms that TPPa is effective at increasing the surface stability of NCM811 cathode material because the TPPa-initiated POx-based CEI layer prevents electrolyte decomposition in the cell even at high temperatures.

Mitigating Metal-dissolution in a High-voltage 15 wt% Si-Graphite‖Li-rich Layered Oxide Full-Cell Utilizing Fluorinated Dual-Additives

  • Kim, Jaeram;Kwak, Sehyun;Pham, Hieu Quang;Jo, Hyuntak;Jeon, Do-Man;Yang, A-Reum;Song, Seung-Wan
    • Journal of Electrochemical Science and Technology
    • /
    • v.13 no.2
    • /
    • pp.269-278
    • /
    • 2022
  • Utilization of high-voltage electrolyte additive(s) at a small fraction is a cost-effective strategy for a good solid electrolyte interphase (SEI) formation and performance improvement of a lithium-rich layered oxide-based high-energy lithium-ion cell by avoiding the occurrence of metal-dissolution that is one of the failure modes. To mitigate metal-dissolution, we explored fluorinated dual-additives of fluoroethylene carbonate (FEC) and di(2,2,2-trifluoroethyl)carbonate (DFDEC) for building-up of a good SEI in a 4.7 V full-cell that consists of high-capacity silicon-graphite composite (15 wt% Si/C/CF/C-graphite) anode and Li1.13Mn0.463Ni0.203Co0.203O2 (LMNC) cathode. The full-cell including optimum fractions of dual-additives shows increased capacity to 228 mAhg-1 at 0.2C and improved performance from the one in the base electrolyte. Surface analysis results find that the SEI stabilization of LMNC cathode induced by dual-additives leads to a suppression of soluble Mn2+-O formation at cathode surface, mitigating metal-dissolution event and crack formation as well as structural degradation. The SEI and structure of Si/C/CF/C-graphite anode is also stabilized by the effects of dual-additives, contributing to performance improvement. The data give insight into a basic understanding of cathode-electrolyte and anode-electrolyte interfacial processes and cathode-anode interaction that are critical factors affecting full-cell performance.

Thermal Behavior of LixCoO2 Cathode and Disruption of Solid Electrolyte Interphase Film

  • Doh, Chil-Hoon;Kim, Dong-Hun;Lee, Jung-Hun;Lee, Duck-Jun;Jin, Bong-Soo;Kim, Hyun-Soo;Moon, Seong-In;Hwang, Young-Gi;Veluchamy, Angathevar
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.4
    • /
    • pp.783-786
    • /
    • 2009
  • Thermogravimetric analysis (TGA), differential scanning calorimetry (DSC) and ion chromatography(IC) were employed to analyze the thermal behavior of $Li_xCoO_2$ cathode material of lithium ion battery. The mass loss peaks appearing between 60 and 125 ${^{\circ}C}$ in TGA and the exothermic peaks with 4.9 and 7.0 J/g in DSC around 75 and 85 ${^{\circ}C}$ for the $Li_xCoO_2$ cathodes of 4.20 and 4.35 V cells are explained based on disruption of solid electrolyte interphase (SEI) film. Low temperature induced HF formation through weak interaction between organic electrolyte and LiF is supposed to cause carbonate film disruption reaction, $Li_2CO_3\;+\;2HF{\rightarrow}\;2LiF\;+\;CO_2\;+\;H_2O$. The different spectral DSC/TGA pattern for the cathode of 4.5 V cell has also been explained. Presence of ionic carbonate in the cathode has been identified by ion chromatography and LiF reported by early researchers has been used for explaining the film SEI disruption process. The absence of mass loss peak for the cathode washed with dimethyl carbonate (DMC) implies ionic nature of the film. The thermal behavior above 150 ${^{\circ}C}$ has also been analyzed and presented.

Effect of Fluoroethylene Carbonate in the Electrolyte for LiNi0.5Mn1.5O4 Cathode in Lithium-ion Batteries

  • Kim, Jaemin;Go, Nakgyu;Kang, Hyunchul;Tron, Artur;Mun, Junyoung
    • Journal of Electrochemical Science and Technology
    • /
    • v.8 no.1
    • /
    • pp.53-60
    • /
    • 2017
  • Fluoroethylene carbonate (FEC) was studied as an additive for the electrolyte in lithium ion batteries with the $LiNi_{0.5}Mn_{1.5}O_4$ (LNMO) spinel cathode operating at a high potential beyond 4.7 V (vs. $Li/Li^+$). It was found that the FEC additive was electrochemically active for the $1^{st}$ charge cycle on the LNMO cathode. The presence of a large amount of FEC (more than 40 vol%) in the electrolyte caused severe side reactions with abnormally long voltage plateaus. In contrast, when the electrolyte contained less than 30 vol% FEC, the surface of the LNMO cathode was stabilized by the formation of the solid-electrolyte interphase (SEI), leading to improved cyclability. However, the resistance from the SEI limited the rate capability because of sluggish lithium transportation through the SEI and electronic insulation between the particles in the electrode.

Effect of Tris(trimethylsilyl) Phosphate Additive on the Electrochemical Performance of Nickel-rich Cathode Materials at High Temperature

  • Jang, Seol Heui;Mun, Junyoung;Kang, Dong-Ku;Yim, Taeeun
    • Journal of Electrochemical Science and Technology
    • /
    • v.8 no.2
    • /
    • pp.162-168
    • /
    • 2017
  • $LiNi_xCo_yMn_zO_2$ cathode materials have been the focus of much attention because of their high specific capacity. However, because of the poor interfacial stability between cathodes and electrolytes, the cycling performance of these materials fades rapidly, especially at high temperatures. In the present paper, we propose the use of tris(trimethylsilyl) phosphate (TMSPO), which contains phosphate and silyl functional groups, as a functional additive in electrolytes. The addition of TMSPO resulted in the formation of cathode electrolyte interphase (CEI) layers on the surfaces of the cathodes and effectively suppressed electrolyte decomposition reactions, even at high temperatures. As a result, cells cycled with TMSPO exhibited remarkable capacity, which remained after 50 cycles (82.0%), compared to cells cycled without TMSPO (64.6%).

The Surface Modification of Electrode with Solid Electrolyte Interphase for Hybrid Supercapacitor

  • Choi, Min-Geun;Kang, Soo-Bin;Yoon, Jung Rag;Lee, Byung Gwan;Jeong, Dae-Yong
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.3
    • /
    • pp.1102-1106
    • /
    • 2015
  • A hybrid supercapacitor (HS) is an energy storage device used to enhance the low weight energy density (Wh/kg) of a supercapacitor. On the other hand, a sudden decrease in capacity has been pointed out as a reliability problem after many charge/discharge cycles. The reliability problem of a HS affects the early aging process. In this study, the capacity performance of a HS was observed after charge/discharge. For detailed analysis of the initial charge/discharge cycles, the charge and discharge curve was measured at a low current density. In addition, a solid electrolyte interphase (SEI) layer was confirmed after the charge/discharge. A HC composed of a lithium titanate (LTO) anode and active carbon cathode was used. The charge/discharge efficiency of the first cycle was lower than the late cycles and the charge/discharge rate was also lower. This behavior was induced by SEI layer formation, which consumed Li ions in the LTO lattice. The formation of a SEI layer after the charge/discharge cycles was confirmed using a range of analysis techniques.