• Title/Summary/Keyword: Cellular Manufacturing System

Search Result 76, Processing Time 0.028 seconds

An integrated framwork for a cellular manufacturing system (셀 생산 시스템의 통합 구조)

  • 이노성;임춘우
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.89-92
    • /
    • 1997
  • The objective of this paper is to provide an alternative framework for the integration of process planning and scheduling in cellular manufacturing. The concept of an integrated cellular manufacturing system is defined and the system architecture is presented. In an integrated cellular manufacturing system, there are three modules : the process planning module, the manufacturing-cell design module, and the cell-scheduling module. For each module, the tasks and their activities are explained.

  • PDF

An Intergrated Framework for a Cellular Manufacturing System (셀 생산 시스템의 통합 구조)

  • 임춘우;이노성
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.20 no.43
    • /
    • pp.219-228
    • /
    • 1997
  • The objective of this paper is to provide an alternative framework for the integration of process planning and scheduling in cellular manufacturing. The concept of an integrated cellular manufacturing system is defined and the system architecture is presented. In an integrated cellular manufacturing system, there are three modules : the process planning module, the manufacturing-cell design module, and the cell-scheduling module. For each module, the tasks and their activities are explained.

  • PDF

Integrated Process Planning with Scheduling System in Cellular Manufacturing

  • Leem, Choon-Woo;Kim, Young-Il;Kim, Wong-Joong
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.19 no.39
    • /
    • pp.27-36
    • /
    • 1996
  • The objective of this paper is to outline an integrated cellular manufacturing system (ICMS) which integrates process planning and scheduling in the cellular manufacturing environment. It combines design systems with manufacturing systems in batch production. Furthermore, it is developed to overcome the difficulties that exist in the current manufacturing practices.

  • PDF

A Study on the Formation of Cellular Manufacturing Line for Construction JIT System's Basis (JIT 시스템 운용의 출발점 - Cellular 제조라인의 구축)

  • 구일섭;신현표
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.17 no.31
    • /
    • pp.43-48
    • /
    • 1994
  • In an effort to become more competitive and cost efficient many companies have shifted from traditional job-shop production to production using group technology (GT) and cell manufacturing (CM). Cellular manufacturing is critical to implementing Just-in-Time (JIT) production which pointed out in the previous articles. and adopt the U-shaped cell which allows for entry at one end of the U and exist at the other. This paper looks at the availability of cellular manufacturing, by applying those concepts to the small and medium sized industry.

  • PDF

Determining Appropriate Production Conditions in Cellular Manufacturing Systems (셀생산(生産)의 효율적(效率的)인 운용(運用)을 위한 시뮤레이션 연구(硏究))

  • Song, Sang-Jae;Choi, Jung-Hee
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.19 no.2
    • /
    • pp.23-34
    • /
    • 1993
  • Although there are numerous studies that address the problem of optimal machine grouping and part family classification for cellular manufacturing, little research has been reported that studies the conditions where cellular manufacturing is appropriate. This paper, in order to evaluate and compare the job shop with the GT cellular shop, the performance of those shops were simulated by using SIMAN. We tested the effect of independent variables including changes of product demands, intercell flow level, group setup time, processing time variability, variety of material handling systems, and job properties (ratio of processing time and material handling time). And also performance measures (dependent variables), such as machine utilization, mean flow time, average waiting time, and throughput rate, are discussed. Job shop model and GT cellular shop written in SIMAN simulation language were used in this study. These systems have sixteen machines which are aggregated as five machine stations using the macro feature of SIMAN. The results of this research help to better understand the effect of production factors on the performance of cellular manufacturing systems and to identify some of the necessary conditions required to make these systems perform better than traditional job shops. Therefore, this research represents one more step towards the characterization of shops which may benefit from cellular manufacturing.

  • PDF

Design of Manufacturing Cell and Cellular Layout based on Genetic Algorithm (유전 알고리듬에 기초한 제조셀과 셀 배치의 설계)

  • Cho, Kyu-Kab;Lee, Byung-Uk
    • IE interfaces
    • /
    • v.14 no.1
    • /
    • pp.20-29
    • /
    • 2001
  • This paper presents a concurrent design approach that deals with manufacturing cell formation and cellular layout in Cellular Manufacturing System. Manufacturing cell formation is to group machines into machine cells dedicated to manufacture of part families, and cellular layout problem determines layout of the manufacturing cells within shop and layout of the machines within a cell. In this paper, a concurrent approach for design of machine cell and cellular layout is developed considering manufacturing parameters such as alternative process plans, alternative machines, production volume and processing time of part, and cost per unit time of operation. A mathematical model which minimizes total cost consisting of machine installation cost, machine operating cost, and intercell and intracell movements cost of part is proposed. A hybrid method based on genetic algorithm is proposed to solve the manufacturing cell formation and cellular layout design problem concurrently. The performance of the hybrid method is examined on several problems.

  • PDF

A Method of Component-Machine Cell Formation for Design of Cellular Manufacturing Systems (셀제조시스템 설계를 위한 부품-기계 셀의 형성기법)

  • Cho, Kyu-Kab;Lee, Byung-Uk
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.13 no.4
    • /
    • pp.143-151
    • /
    • 1996
  • The concept of cellular manufacturing is to decompose a manufacturing system into subsystems, which are easier to manage than the entire manufacturing system. The objective of cellular manufacturing is to group parts with similar processing requirements into part families and machines into cells which meet the processing needs of part families assigned to them. This paper presents a methodology for cell formation based on genetic algorithm which produces improved cell formation in terms of total moves, which is a weighted sum of both intercell moves and intracell moves. A sample problem is solved for two, three and four cells with an approach based on genetic algorithms.

  • PDF

A Material Handling Performance Evaluation Model for Cellular Manufacturing System of Based on Multi-Attributes Analysis Method (다 속성분석방법을 이용한 제조물류시스템의 성능산정모델)

  • 황홍석
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 2000.10a
    • /
    • pp.167-170
    • /
    • 2000
  • This paper is concerned with development of a performance evaluation model for material handling system in cellular manufacturing system based on multi-attributes analysis method. We used the AHP(analytic hierarchy process) and fuzzy set ranking methodologies to overcome the special decision problems; those of multi -objective, multi-criterion, and multi-attributes. We proposed a 3-step approaches and we developed a systemic and practical computer program to solve the problems in the proposed methods. Computational experiments are then performed to cellular manufacturing system and show the effectiveness of the proposed model.

  • PDF

Cellular manufacturing system design with proper assignment of machines and parts

  • Won Yu Gyeong
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 2002.05a
    • /
    • pp.390-396
    • /
    • 2002
  • This study is concerned with the strict machine-cell and part-family grouping (MCPFG) in cellular manufacturing system design. Most of MCPFG methodologies often suffer from improper assignment of machines and parts in which exceptional machine has more common operations with machines in a cell other than its own cell and exceptional part has more operations through machines in a cell other than the cell corresponding to its own family. This results in the loss of similarity in part design or common setup of machines and the benefits from the conversion of job shop manufacturing into cellular manufacturing are lost. In this study, a two-phase methodology is proposed to find the machine-cells and part families under the strict constraints in which all machines and parts are assigned to its most proper cells and families. Test results with moderately medium-sized ill-structured MCPFG problems available from the literature show the substantial efficiency of the proposed approach.

  • PDF

A study on the variations of a grouping genetic algorithm for cell formation (셀 구성을 위한 그룹유전자 알고리듬의 변형들에 대한 연구)

  • 이종윤;박양병
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 2003.11a
    • /
    • pp.259-262
    • /
    • 2003
  • Group technology(GT) is a manufacturing philosophy which identifies and exploits the similarity of parts and processes in design and manufacturing. A specific application of GT is cellular manufacturing. the first step in the preliminary stage of cellular manufacturing system design is cell formation, generally known as a machine-part cell formation(MPCF). This paper presents and tests a grouping gentic algorithm(GGA) for solving the MPCF problem and uses the measurements of e(ficacy. GGA's replacement heuristic used similarity coefficients is presented.

  • PDF