• Title/Summary/Keyword: Cellular transport

Search Result 230, Processing Time 0.033 seconds

Cellular Flavonoid Transport Mechanisms in Animal and Plant Cells (플라보노이드 세포 수송 기전)

  • Han, Yoo-Li;Lee, So-Young;Lee, Ji Hae;Lee, Sung-Joon
    • Korean Journal of Food Science and Technology
    • /
    • v.45 no.2
    • /
    • pp.137-141
    • /
    • 2013
  • Flavonoids have various biological activities; however, their cellular uptake mechanism is beginning to be understood only recently. This review focuses on cellular flavonoids transport mechanisms in both plants and animals. In plants, flavonoids exist in various cellular compartments, providing a specialized transport system. Newly synthesized flavonoids can be transported from the endoplasmic reticulum to the vacuoles or extracellular space via cellular trafficking pathway. Among membrane transporters, ATP binding cassette, multidrug and toxic extrusion, bilitranslocase homologue transporters play roles in both the influx and efflux of cellular flavonoids across the cell membrane. In recent years, extensive researches have provided a better understanding on the cellular flavonoid transport in mammalian cells. Bilitranslocase transports flavonoids in various tissues, including the liver, intestine and kidneys. However, other transport mechanisms are largely unknown and thus, further investigation should provide detailed mechanisms, which can potentially lead to an improved bioavailability and cellular function of flavonoids in humans.

Genome wide identification of Staufen2-bound mRNAs in embryonic rat brains

  • Maher-Laporte, Marjolaine;DesGroseillers, Luc
    • BMB Reports
    • /
    • v.43 no.5
    • /
    • pp.344-348
    • /
    • 2010
  • Messenger ribonucleoprotein particles (mRNPs) are used to transport mRNAs along neuronal dendrites to their site of translation. Staufen2 is an mRNA-binding protein expressed in the cell bodies and cellular processes of different brain cells. It is notably involved in the transport of dendritic mRNAs along microtubules. Its knockdown expression was shown to change spine morphology and impair synaptic functions. However, the identity of Staufen2-bound mRNAs in brain cells is still completely unknown. As a mean to identify these mRNAs, we immunoprecipitated Staufen2-containing mRNPs from embryonic rat brains and used a genome wide approach to identify Staufen2-associated mRNAs. The genome wide approach identified 1780 mRNAs in Staufen2-containing mRNPs that code for proteins involved in cellular processes such as post-translational protein modifications, RNA metabolism, intracellular transport and translation. These results represent an additional and important step in the characterization of Staufen2- mediated neuronal functions in rat brains.

Expressed Sequence Tag Analysis of Toxic Alexandrium tamarense and Identification of Saxitoxin Biosynthetic Genes (독성 Alexandrium tamarense 의 EST 분석 및 삭시톡신 생합성 유전자의 확인)

  • Chang, Man;Lee, Juyun;Chung, Youngjae;Lee, Gunsup;Kim, Dongguin;Lee, Taek-Kyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.7
    • /
    • pp.3582-3588
    • /
    • 2013
  • Expressed sequence tag (EST) library was constructed from A. tamarense. Base sequences of EST clones were analyzed and saxitoxin biosynthesis-related genes were cloned. Sequences of 827 clones were analyzed and 564 EST were functionally clustered using Blast searches against GenBank. Main genes in the EST had functions on cellular organization, cell metabolism, energy, cell cycle and DNA processing, cellular transport and transport, cell rescue, defense, death and aging, and transcription. Moreover, expression of S-adenosylmethionine synthetase and H2A histone family genes were increased in the toxic A. tamarense. These results show that two genes could be a good biomarkers for the detection of saxitoxin biosynthesis in the A. tamarense.

ANALOG COMPUTING FOR A NEW NUCLEAR REACTOR DYNAMIC MODEL BASED ON A TIME-DEPENDENT SECOND ORDER FORM OF THE NEUTRON TRANSPORT EQUATION

  • Pirouzmand, Ahmad;Hadad, Kamal;Suh, Kune Y.
    • Nuclear Engineering and Technology
    • /
    • v.43 no.3
    • /
    • pp.243-256
    • /
    • 2011
  • This paper considers the concept of analog computing based on a cellular neural network (CNN) paradigm to simulate nuclear reactor dynamics using a time-dependent second order form of the neutron transport equation. Instead of solving nuclear reactor dynamic equations numerically, which is time-consuming and suffers from such weaknesses as vulnerability to transient phenomena, accumulation of round-off errors and floating-point overflows, use is made of a new method based on a cellular neural network. The state-of-the-art shows the CNN as being an alternative solution to the conventional numerical computation method. Indeed CNN is an analog computing paradigm that performs ultra-fast calculations and provides accurate results. In this study use is made of the CNN model to simulate the space-time response of scalar flux distribution in steady state and transient conditions. The CNN model also is used to simulate step perturbation in the core. The accuracy and capability of the CNN model are examined in 2D Cartesian geometry for two fixed source problems, a mini-BWR assembly, and a TWIGL Seed/Blanket problem. We also use the CNN model concurrently for a typical small PWR assembly to simulate the effect of temperature feedback, poisons, and control rods on the scalar flux distribution.

Optimization of structural elements of transport vehicles in order to reduce weight and fuel consumption

  • Kovacs, Gyorgy
    • Structural Engineering and Mechanics
    • /
    • v.71 no.3
    • /
    • pp.283-290
    • /
    • 2019
  • In global competition manufacturing companies have to produce modern, new constructions from advanced materials in order to increase competitiveness. The aim of my research was to develop a new composite cellular plate structure, which can be primarily used for structural elements of road, rail, water and air transport vehicles (e.g. vehicle bodies, ship floors). The new structure is novel and innovative, because all materials of the components of the newly developed structure are composites (laminated Carbon Fiber Reinforced Plastic (CFRP) deck plates with pultruded Glass Fiber Reinforced Plastic (GFRP) stiffeners), furthermore combines the characteristics of sandwich and cellular plate structures. The material of the structure is much more advantageous than traditional steel materials, due mainly to its low density, resulting in weight savings, causing lower fuel consumption and less environmental damage. In the study the optimal construction of a given geometry of a structural element of a road truck trailer body was defined by single- and multi-objective optimization (minimal cost and weight). During the single-objective optimization the Flexible Tolerance Optimization method, while during the multi-objective optimization the Particle Swarm Optimization method were used. Seven design constraints were considered: maximum deflection of the structure, buckling of the composite plates, buckling of the stiffeners, stress in the composite plates, stress in the stiffeners, eigenfrequency of the structure, size constraint for design variables. It was confirmed that the developed structure can be used principally as structural elements of transport vehicles and unit load devices (containers) and can be applied also in building construction.

Electron Microscopic Studies on Cellular Characteristics and Transport Systems in Tight Epithelia (Tight epithelia의 세포특성과 수송체계에 관한 전자현미경적 연구)

  • Jeon, Jin-Seok
    • Applied Microscopy
    • /
    • v.26 no.1
    • /
    • pp.47-57
    • /
    • 1996
  • This study analysed the transport properties of bladder mucosa known as the typical system of 'tight epithelia' by using TEM observation with both rapid freeze-fracture electron microscopy and thin-section method and mainly analysed the cellular characteristics of turtle bladder epithelial cells. The bladder epithelium, like other tight epithelia, consists of a heterogenous population of cells. The majority of the mucosal cells are the granular cells and may function primarily in the process of active $Na^+$ reabsorption in turtle bladder. The remaining two types of cells are rich in mitochondria and is believed to be res-ponsible for a single major transport system, namely, $H^+$ transport by A-type of cell and urinary $HCO_{3}^-$ secretion by B-type of cell. As viewed in freeze-fracture electron micrograph, the tight junctions form a continuous tight seal around the epithelial cells, thus restricting diffusion in tight epithelia. In addition, the apical surface membranes have a population of rod-shaped intramembranous particles (IMPs). It is believed that these IMPs probably represent the components of the proton pump. However, it is likely that these characteristics of the apical transporter remain to be clarified in tight epithelial cells.

  • PDF

Chloroplastic NAD(P)H Dehydrogenase Complex and Cyclic Electron Transport around Photosystem I

  • Endo, Tsuyoshi;Ishida, Satoshi;Ishikawa, Noriko;Sato, Fumihiko
    • Molecules and Cells
    • /
    • v.25 no.2
    • /
    • pp.158-162
    • /
    • 2008
  • Recent molecular genetics studies have revealed that cyclic electron transport around photosystem I is essential for normal photosynthesis and growth of plants. Chloroplastic NAD(P)H dehydorgenase (NDH) complex, a homologue of the complex I in respiratory electron transport, is involved in one of two cyclic pathways. Recent studies on the function and structure of the NDH complex are reviewed.