• Title/Summary/Keyword: Central Composite Method

Search Result 292, Processing Time 0.022 seconds

Modelling of flange-stud-slab interactions and numerical study on bottom-flange-bolted composite-beam connections

  • Xiaoxiang Wang;Yujie Yu;Lizhong Jiang;Zhiwu Yu
    • Steel and Composite Structures
    • /
    • v.47 no.2
    • /
    • pp.203-216
    • /
    • 2023
  • The composite beam connections often encountered fracture failure in the welded bottom flange joint, and a bottom flange bolted connection has been proposed to increase the deformation ability of the bottom flange joint. The seismic performance of the bottom flange bolted composite beam connection was suffered from both the composite action of concrete slab and the asymmetric load transfer mechanisms between top and bottom beam flange joints. Thus, this paper presents a comprehensive numerical study on the working mechanism of the bottom flange bolted composite beam connections. Three available modelling methods and a new modelling method on the flange-stud-slab interactions were compared. The efficient numerical modeling method was selected and then applied to the parametric study. The influence of the composite slab, the bottom flange bolts, the shear composite ratio and the web hole shape on the seismic performance of the bottom flange bolted composite beam connections were investigated. A hogging strength calculation method was then proposed based on numerical results.

Method for flexural stiffness of steel-concrete composite beams based on stiffness combination coefficients

  • Ding, Faxing;Ding, Hu;He, Chang;Wang, Liping;Lyu, Fei
    • Computers and Concrete
    • /
    • v.29 no.3
    • /
    • pp.127-144
    • /
    • 2022
  • To investigate the flexural stiffness of the steel-composite beam, the contributions of the concrete slab and steel beam to the stiffness were considered separately. The method for flexural stiffness of the composite beam, considering the stiffness of the concrete slab and steel beam, was proposed in this paper. In addition, finite element models of the composite beams were established and validated. Parametric analyses were carried out to study the effects of different parameters on the neutral axis distance reduction factors of the concrete slab and steel beam. Afterward, the neutral axis distance reduction factors were fitted, and the stiffness combination coefficients of the two parts were solved. Based on the stiffness combination coefficients, the flexural stiffness of the composite beam can be obtained. The proposed method was validated by the tested and analyzed results. The method has a simple form and high accuracy in predicting the flexural stiffness of the steel-concrete composite beam, even though the degree of shear connection is less than 0.5.

Influence of post-pouring joint on long-term performance of steel-concrete composite beam

  • Huang, Dunwen;Wei, Jun;Liu, Xiaochun;Zhang, Shizhuo;Chen, Tao
    • Steel and Composite Structures
    • /
    • v.28 no.1
    • /
    • pp.39-49
    • /
    • 2018
  • The concrete bridge decks are usually precast and in-situ assembled with steel girders with post-pouring joint in the construction practice of super-wide steel-concrete composite beam. But the difference of concrete age between the precast slabs and the post-pouring joint has been not yet considered for the long-term performance analysis of this kind composite beam. A simply supported precast-assembled T-shaped beam was taken as an example to analyze the long-term performance of steel-concrete composite beam with post-pouring joint. Based on the deformation coordination conditions of the old-new concrete deck and steel girder, a theoretical model for the long-term behavior of precast-assembled composite beam is proposed in this paper according to age-adjusted effective modulus method. Then, the feasibility of the proposed model is verified by the available test data from the Gilbert's composite beams. Parametric studies were preformed to evaluate the influences of the cross-sectional area ratio of the post-pouring joint to the whole bridge deck, as well as the difference of concrete age between the precast slabs and the post-pouring joint, on the long-term performance of the composite beam. The results indicate that the traditional method without considering the age difference would seriously underestimate the effect of creep and shrinkage of concrete bridge decks. The concrete age difference between the precast slabs and the post-pouring joint should be demonstrated for the life cycle design and long-term performance analysis of precast-assembled steel-concrete composite beams.

Composite effects of circular concrete-filled steel tube columns under lateral shear load

  • Faxing Ding;Changbin Liao;Chang He;Wei Gao;Liping Wang;Fei Lyu;Yuanguang Qiu;Jianjun Yang
    • Computers and Concrete
    • /
    • v.31 no.2
    • /
    • pp.123-137
    • /
    • 2023
  • To fully understand shear mechanisms and composite effects of circular concrete-filled steel tube (CFST) columns, systematic numerical investigations were conducted in this paper by improved finite element models. The triaxial plastic-damage constitutive model of the concrete and the interactions between the concrete and steel tube were considered. Afterwards, the critical and upper bound shear span ratios of the circular CFST column under lateral shear loading were determined. The composite effects between the two materials were analyzed by comparing the shear resistance with plain concrete column and hollow steel tube. In addition, a method that predicts the shear bearing capacity of a circular CFST column was proposed. The confining effects on the concrete core and the restraining effects on the steel tube were considered in this method. The proposed formula can predict more accurate results than the methods in different codes and references.

Distortional buckling of I-steel concrete composite beams in negative moment area

  • Zhou, Wangbao;Li, Shujin;Huang, Zhi;Jiang, Lizhong
    • Steel and Composite Structures
    • /
    • v.20 no.1
    • /
    • pp.57-70
    • /
    • 2016
  • The predominant type of buckling that I-steel concrete composite beams experience in the negative moment area is distortional buckling. The key factors that affect distortional buckling are the torsional and lateral restraints by the bottom flange. This study thoroughly investigates the equivalent lateral and torsional restraint stiffnesses of the bottom flange of an I-steel concrete composite beam under negative moments. The results show a coupling effect between the applied forces and the lateral and torsional restraint stiffnesses of the bottom flange. A formula is proposed to calculate the critical buckling stress of the I-steel concrete composite beams under negative moments by considering the lateral and torsional restraint stiffnesses of the bottom flange. The proposed method is shown to better predict the critical bending moment of the I-steel composite beams. This article introduces an improved method to calculate the elastic foundation beams, which takes into account the lateral and torsional restraint stiffnesses of the bottom flange and considers the coupling effect between them. The results show a close match in results from the calculation method proposed in this paper and the ANSYS finite element method, which validates the proposed calculation method. The proposed calculation method provides a theoretical basis for further research on distortional buckling and the ultimate resistance of I-steel concrete composite beams under a variable axial force.

Tensile Failure and Buckling Load Improvement of Composite Plates With A Central Hole (원공이 있는 복합재료 평판의 인장파단 및 좌굴 하중 개선)

  • 이호형
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 1999.11a
    • /
    • pp.242-245
    • /
    • 1999
  • In aerospace industry improvement of structural performance of flight structure without increasing weight has great advantage. In this study, an innovative design method to increase the buckling load and tension failure load at the same time without increasing the weight was investigated by using the curvilinear fiber format in composite plates with central hole. It was investigated how much gain can be obtained with curvilinear fiber format for the plates with different hole size and different stacking sequence.

  • PDF

Composite action of notched circular CFT stub columns under axial compression

  • Ding, Fa-xing;Wen, Bing;Liu, Xue-mei;Wang, Hai-bo
    • Steel and Composite Structures
    • /
    • v.24 no.3
    • /
    • pp.309-322
    • /
    • 2017
  • This paper conducted both numerical and theoretical studies to investigate the composite action of notched circular concrete-filled steel tubular (CFT) stub columns under axial compression and established a theoretical method to predict their ultimate bearing capacity. 3D finite element (FE) analysis was conducted to simulate the composite action and the results were in good agreement with experimental results on circular CFT stub columns with differently oriented notches in steel tubes. Parametric study was conducted to understand the effects of different parameters on the mechanical behavior of circular CFT stub columns and also the composite action between the steel tube and the core concrete. Based on the results, a theoretical formula was proposed to calculate the ultimate bearing capacity of notched CFT stub columns under compression with consideration of the composite action between the steel tube and the core concrete.

Study on flexural capacity of simply supported steel-concrete composite beam

  • Liu, Jing;Ding, Fa-xing;Liu, Xue-mei;Yu, Zhi-wu
    • Steel and Composite Structures
    • /
    • v.21 no.4
    • /
    • pp.829-847
    • /
    • 2016
  • This paper investigates the flexural capacity of simply supported steel-concrete composite I beam and box beam under positive bending moment through combined experimental and finite element (FE) modeling. 24 composite beams are included into the experiments and parameters including shear connection degree, transverse reinforcement ratio, section form of girder, diameter of stud and loading way are also considered and investigated. ABAQUS is employed to establish FE models to simulate the behavior of composite beams. The influences of a few key parameters, such as the shear connection degree, stud arrangement, stud diameter, beam length and loading way, on flexural capacity are discussed. In addition, three methods including GB standard, Eurocode 4, and Nie method are also used to estimate the flexural capacity of composite beams and also for comparison with experimental and numerical results. The results indicate that Nie method may provide a better estimation in comparison to other two standards.

Effect of Various Regression Functions on Structural Optimizations Using the Central Composite Method (중심합성법에 의한 구조최적화에서 회귀함수변화의 영향)

  • Park, Jung-Sun;Jeon, Yong-Sung;Im, Jong-Bin
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.33 no.1
    • /
    • pp.26-32
    • /
    • 2005
  • In this paper, the effect of various regression models is investigated on structural optimization using the central composite method. Three bar truss and the upper platform of a satellite are optimized using various regression models that are polynomial, exponential and log functions. Response surface method is non-gradient, semi-global, discrete and fast converging in optimization problem. Sampling points are extracted by the design of experiments using the central composite method. Response surface is generated using the various regression functions. Structural analysis for calculating constraints is executed to find static and dynamic responses. From this study, it is verified that the response surface method has advantage in optimum value and computation time in comparison to other optimization methods.

DEVELOP AND USE OF STUD PENETRATE WELDING TECHNOLOGY IN COMPOSITE FLOOR OF STEEL STRUCTURE

  • Fu, Jifei;Zhang, Youquan;Ma, Dezhi
    • Proceedings of the KWS Conference
    • /
    • 2002.10a
    • /
    • pp.349-354
    • /
    • 2002
  • Stud penetrate welding is an important item of composite floor in modern steel structure, especially in high-rise buildings. But it is difficult to get satisfied welding quality due to all kinds of factors. In this paper, the author put forward a new welding procedure named method of energy control through analysis and comparison of the wave curves of stud welding based on large amount of experiments and tests in laboratory and construction areas. The use of this welding procedure in some large engineering in recent years proved that this method is effective and practicable

  • PDF