• Title/Summary/Keyword: Ceramide PC104

Search Result 3, Processing Time 0.016 seconds

Emulsion Properties of Pseudo-Ceramide PC104/Water/Polyoxyethylene Cholesteryl Ether and Polyoxyethylene Cetyl Ether Mixtures.

  • Kim, Do-Hoon;Oh, Seong-Geun;Lee, Young-Jin;Kim, Youn-Joon;Kim, Han-Kon;Kang, Hak-Hee
    • Proceedings of the SCSK Conference
    • /
    • 2003.09b
    • /
    • pp.330-342
    • /
    • 2003
  • The formation of emulsions and micelles in water/ceramide PC104/CholE $O_{20}$/C$_{16}$E $O_{20}$ and water/ceramide PC104/CholE $O_{20}$ mixtures was investigated through the phase behavior studies. The phase diagrams showed the existence of micelle and emulsion regions in both systems. The mixed surfactant system (CholE $O_{20}$/C$_{16}$E $O_{20}$) showed the wider micellar and emulsion regions than the single surfactant system (CholE $O_{20}$). From FT-IR measurements, it was found that the polyoxyethylene (POE) groups of surfactants formed the hydrogen bonds with amido carbonyl group in ceramide PC104. This result indicated that the hydrophilic part (EO) of surfactants could stabilize the lamellar structure and emulsion of ceramide PC104. The mixed surfactant system (CholE $O_{20}$/C$_{16}$E $O_{20}$) resulted in the smaller emulsion droplet size due to the effect of curvature at the interface, thus further increasing emulsion stability. With the penetration of $C_{16}$E $O_{20}$into the interfacial layer of surfactants in emulsion, the curvature of the interface might be altered for the formation of smaller emulsion droplets. The mixed surfactant system could incorporate up to 4 wt. % of ceramide PC104 into emulsion more than single surfactant system.ystem.m.

  • PDF

Physico-Chemical Properties of Pseudoceramide in Relation to Bilayer-Forming

  • Jeong, Min-Woo;Oh, Seong-Geun;Kim, Do-Hoon;Kang, Hak-Hee
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.27 no.1
    • /
    • pp.3-15
    • /
    • 2001
  • The bilayer forming ability of pseudo-ceramide PC104 in octanoic acid/water/n-octyl $\beta$-D-glucoside mixtures was investigated through the phase diagram. Because of its low solubility in water and of its crystallization, pseudoceramide PC104 was dissolved in octanoic acid, which is nontoxic additive for foods and cosmetics. The mixtures formed four different phases (L1, L2, LC and two phases). Depending on the concentration of PC104 in octanoic acid, the region of each phase was extended or contracted. On the contrary to the region of L2, regions of lamellar phase and L1 phase were expanded. The bilayer-forming ability of PC104 was explained on the basis of concentration of PC104 at interface and interaction between PC104 and octanoic acid. From FT-IR results, it was found that the interactions of PC104’s polar head group with octanoic acid increased as the amount of PC104 in octanoic acid increased. Also emulsion size and size distribution have been studied depending upon the emulsification path. droplets of emulsion prepared from lamellar phase were smaller and more homogeneous compared to those of emulsions formed from L2 phase.

  • PDF

Improvement of skin barrier function using lipid mixture

  • Park, Won-Seok;Son, Eui-Dong;Nam, Gae-Won;Park, Jong-Ho
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.27 no.1
    • /
    • pp.53-72
    • /
    • 2001
  • Dry skin is caused mainly by the perturbation of stratum corneum lipids which affected by ageing, change of season, excess use of surfactant and the effect of disease like atopic dermatitis and psoriasis. Intercellular lipid structures in stratum corneum are responsible for the barrier function of mammalian skin. The major lipd classes that can be extracted from stratum corneum are ceramides, cholesterol and fatty acid, which make up approximately 50, 25, 10 percent of the stratum corneum lipid mass, respectively. Small amount of cholesterol sulfate, phospholipids, glycosylceramide and cholesterol esters are also present. Recent studies have shown that application of one or two these lipids to the perturbed skin delays barrier recovery; only equimolar mixtures allow normal recovery. We observed that barrier recovery rate was improved in hairless mouse by topical application of single neutral lipids (ceramide, free fatty acid, cholesterol) and lipid mixtures. Whereas the application of single lipid didn’t allows a significant enhancement comparing with normal barrier repair, the equimolar mixtures of 3 components(including synthetic pseudoceramide PC104) improved barrier repair, as assessed by the transepidermal water loss. At clinical study to the volunteers aged over sixty, skin dryness recuperated by the increase of moisture(capacitance) and the reduction of scaling. Utilization of physiologic lipid mixture containing natural ceramides or synthetic pseudoceramide could lead to new forms of topical therapy for the dryness and dermatoses(e.g., psoriasis, atopic dermatitis and irritant dermatitis).

  • PDF