• Title/Summary/Keyword: Charge amount

Search Result 652, Processing Time 0.031 seconds

Influence of Low Stage Refrigerant Charge Amount on the Performance of Cascade Heat Pump (캐스케이드 열펌프의 저단 사이클 충전량 변화에 따른 성능 특성)

  • Park, Seung Byung;Choi, Jong Min
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.11 no.1
    • /
    • pp.15-20
    • /
    • 2015
  • In this study, the optimization and performance characteristics of a cascade heat pump system was analyzed with the variation of low stage refrigerant charge amount. The cascade heat pump was designed and constructed with R134a and R410A as the refrigerant for high stage and low stage cycle, respectively. Experiments were conducted by varying the low stage charge amount and the performance characteristics of the cascade heat pump were studied. The refrigerant charge amount of the low stage cycle was varied between the ranges of -15% and +10% of the optimum charge amount. The performance variation experienced in the cascade heat pump due to the variation of refrigerant charge amount shows greater effect in the undercharge regions than the overcharge regions. COP reduction in the undercharge region is larger than the decrease in the overcharge region. Some cycle variation such as power consumption and cycle pressure according to low stage refrigerant charge amount showed different trends comparing with those according to high stage refrrgerant charge amount. Therefore, the optimum charge amount of the cascade heat pump should be determined based on the experimental data obtained by the variation of high and low stage refrigerant charge amount.

A Numerical Study on R410A Charge Amount in an Air Cooled Mini-Channel Condenser (공랭식 미소유로 응축기의 R410A 충전량 예측에 관한 수치적 연구)

  • Park, Chang-Yong
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.22 no.10
    • /
    • pp.710-718
    • /
    • 2010
  • A numerical study was performed to predict refrigerant charge amount in a mini-channel condenser for a R410A residential air-conditioning system. Multi-channel flat tubes with 12 mini-channels of 1.17 mm average hydraulic diameter for each tube were applied to the condenser. The condenser consisted of 3 passes, and the first, second, and third pass had 44, 19, and 11 tubes, respectively. Each pass was connected by a vertical header. In this study, the condenser was divided into 410 finite volumes, and analyzed by an $\varepsilon$-NTU method. With thermophysical properties and void fraction models for each volume element, the R410A amount distribution and a total charge amount in the condenser were calculated. The predicted total charge amount was compared with the experimentally measured charge amount under a standard ARI A condition. The developed model could predict the charge amount in the mini-channel condenser within prediction errors from -23.9% to -3.0%. Air velocity distribution at the condenser face was considered as non-uniform and uniform by the simulation model, and its results showed that the air velocity distribution could significantly influence the charge amount and vapor phase distribution in the condenser.

Influence of Refrigerant Charge Amount on the Performance of a Water-to-Water Type Ground Source Heat Pump with a Variation of Compressor Speed and Water Flow Rate (용량 가변 및 유량변화에 따른 지열원 물대물 열펌프 유닛의 충전량 변화에 따른 성능 특성)

  • Cho, Chan-Yong;Choi, Jong-Min
    • New & Renewable Energy
    • /
    • v.7 no.4
    • /
    • pp.30-36
    • /
    • 2011
  • The objective of this study is to investigate the effects of the refrigerant charge amount on the performance of a water-to-water ground source heat pump with a variation of compressor speed and the secondary fluid flow rate. The water-to-water ground source heat pump was tested by varying refrigerant charge amount from -40% to 20% of full charge. Compressor speed was changed from 30 Hz to 75 Hz and the secondary fluid flow rate was adjusted from 6 LPM to 14 LPM. For all test conditions, EWTs of an indoor heat exchanger and an outdoor heat exchanger were maintained at standard conditions of ISO 13256-2. The slope of the COP with the variation of charge amount is much steeper at undercharged conditions than that at overcharged conditions. For all compressor speed, the variation of the system performance according to charge amounts showed the similar trends. However, the optimum charge amount of the system increased a little with an increment of compressor speed. When the secondary fluid flow rate decreased, the system was optimized at higher refrigerant charge amount conditions.

Influence of Refrigerant Charge Amount on the Performance of a Water-to-Water Heat Pump with a Variation of Compressor Speed and Water Flow Rate (압축기 용량 및 유량변화에 따른 물대물 열펌프 유닛의 충전량 변화에 따른 성능 특성)

  • Cho, Chanyong;Choi, Jong Min
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.11a
    • /
    • pp.143.1-143.1
    • /
    • 2011
  • The objective of this study is to investigate the effects of the refrigerant charge amount on the performance of a water-to-water ground source heat pump with a variation of compressor speed and the secondary fluid flow rate. The water-to-water ground source heat pump was tested by varying refrigerant charge amount from -40% to 20% of full charge. Compressor speed was changed from 30 Hz to 75 Hz, and the secondary fluid flow rate was adjusted from 6 LPM to 14 LPM. For all test conditions, EWT of an indoor heat exchanger and an outdoor heat exchanger were maintained at standard conditions of ISO 13256-2. The slope of the COP with the variation of charge amount is much steeper at undercharged conditions than that at overcharged conditions. For all compressor speed, the variation of the system performance according to charge amounts showed the similar trends. However, the optimum charge amount of the system increased a little with an increment of compressor speed. When the secondary fluid flow rate decreased, the system optimized at higher refrigerant charge amount conditions.

  • PDF

Effects of Refrigerant Charge Amount on the Cooling Performance of a Transcritical $CO_{2}$ Cycle (냉매충전량이 초임계 이산화탄소 사이클의 냉방성능에 미치는 영향에 대한 연구)

  • Cho Honghyun;Ryu Changgi;Kim Yongchan;Sim Yunhee
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.17 no.5
    • /
    • pp.410-417
    • /
    • 2005
  • The cooling performance of a transcritical $CO_{2}$ cycle varies significantly with a variation of refrigerant charge amount. In this study, the performance of the $CO_{2}$ system was measured and analyzed by varying refrigerant charge amount at a standard test condition. Besides, the losses of the major components in the $CO_{2}$ system were estimated by evaluating entropy generation with refrigerant charge amount. The losses in the expansion device and the gascooler show the major portion of the total loss. For undercharging conditions, the expansion loss dominates the overall system performance, while the gascooler loss increases significantly with an increase of refrigerant charge amount.

Effect of Conductive Additive Amount on Electrochemical Performances of Organic Supercapacitors (유기계 슈퍼커패시터에서 도전재의 양이 전기화학적 특성에 미치는 영향)

  • Yang, Inchan;Lee, Gihoon;Jung, Ji Chul
    • Korean Journal of Materials Research
    • /
    • v.26 no.12
    • /
    • pp.696-703
    • /
    • 2016
  • In this study, we intensively investigated the effect of conductive additive amount on electrochemical performance of organic supercapacitors. For this purpose, we assembled coin-type organic supercapacitor cells with a variation of conductive additive(carbon black) amount; carbon aerogel and polyvinylidene fluoride were employed as active material and binder, respectively. Carbon aerogel, which is a highly mesoporous and ultralight material, was prepared via pyrolysis of resorcinol-formaldehyde gels synthesized from polycondensation of two starting materials using sodium carbonate as the base catalyst. Successful formation of carbon aerogel was well confirmed by Fourier-transform infrared spectroscopy and $N_2$ adsorption-desorption analysis. Electrochemical performances of the assembled organic supercapacitor cells were evaluated by cyclic voltammetry, galvanostatic charge/discharge, and electrochemical impedance spectroscopy measurements. Amount of conductive additive was found to strongly affect the charge transfer resistance of the supercapacitor electrodes, leading to a different optimal amount of conductive additive in organic supercapacitor electrodes depending on the applied charge-discharge rate. A high-rate charge-discharge process required a relatively high amount of conductive additive. Through this work, we came to conclude that determining the optimal amount of conductive additive in developing an efficient organic supercapacitor should include a significant consideration of supercapacitor end use, especially the rate employed for the charge-discharge process.

Influence of the Operation Modes on the Optimum Refrigerant Charge Amount of a Heat Pump (다양한 운전모드에서 물대물 열펌프의 성능 및 최적충전량 변화에 관한 연구)

  • Boahen, Samuel;Lee, Kwang Ho;Choi, Jong Min
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.14 no.2
    • /
    • pp.15-22
    • /
    • 2018
  • As heat pump application has been extending to residential, commercial, and industrial fields, the heat pump should have many operation modes. It is required to optimize refrigerant charge amount at all operation modes in order to enhance the annual performance of heat pumps. In this study, the performance analysis of the heat pump which has cooling, heating, cooling-hot water, heating-hot water, and hot water modes was executed with the variation of refrigerant charge amount. As the refrigerant charge amount changed, the maximum COPs of the heat pump at different operation modes were changed within ${\pm}10%$. Therefore, it is highly recommended to select optimum charge amount for the heat pump based on the analysis of annual load for each operation modes.

Performance Characteristics of Water-Chilling Heat Pump Using CO2 on Variation of Refrigerant Charge Amount (냉매 충전량에 따른 CO2용 수냉식 열펌프의 성능 특성에 관한 연구)

  • Son, Chang-Hyo;Yu, Tae-Guen;Jang, Seong-Il;Oh, Hoo-Kyu
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.31 no.5
    • /
    • pp.558-566
    • /
    • 2007
  • The performance characteristics of water-chilling heat pump using $CO_2$ with respect to variation of refrigerant charge amount was investigated experimentally. An experimental apparatus is consisted of a compressor, a gas cooler, an expansion valve, an evaporator and a liquid receiver. All heat exchangers used in the test rig are counter-flow-type heat exchangers with concentric dual tubes, which are made of copper. The gas cooler and the evaporator consist of 6 and 4 straight sections respectively arranged in parallel, each has 2400 mm length. The experimental results summarize as the followings : As the refrigerant charge ratio of $CO_2$ heat pump system increases, the discharge pressure and compressor ratio increases, but mass flow rate of refrigerant decreases. Also the compressor work increases with the increase of refrigerant charge ratio. However, the heating and cooling capacity of $CO_2$ heat pump decreases as the refrigerant charge ratio increases. The maximum heating COP of $CO_2$ heat pump system presented at 0.25 refrigerant charge ratio. It is possible to confirm the optimum charge ratio of $CO_2$ heat pump system by the viewpoint of heating COP.

Optimization of Heat Pump Systems (열펌프의 성능 최적화에 관한 연구)

  • Choi, Jong-Min;Yun, Rin;Kim, Yong-Chan
    • New & Renewable Energy
    • /
    • v.3 no.4
    • /
    • pp.22-30
    • /
    • 2007
  • An expansion device plays an important role in optimizing the heat pumps by controlling refrigerant flow and balancing the system pressures. Conventional expansion devices are being gradually replaced with electronic expansion valves due to increasing focus on comfort, energy conservation, and application of a variable speed compressor. In addition, the amount of refrigerant charge in a heat pump is another primary parameter influencing system performance. In this study, the flow characteristics of the expansion devices are analyzed, and the effects of refrigerant charge amount on the performance of the heat pump and the variation of compressor speed are investigated at various operating conditions. Mass flow rate through capillary tube, short tube orifice, and EEV was strongly dependent on the upstream pressure and subcooling. The heat pump system is very sensitive with a variation of refrigerant charge amount. The performance of it can be optimized by adjusting the flow rate through expansion device to maintain a constant superheat at all test conditions.

  • PDF

Optimization of Heat Pump Systems (열펌프의 성능 최적화에 관한 연구)

  • Choi, Jong-Min;Yun, Rin;Kim, Yong-Chan
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.11a
    • /
    • pp.538-541
    • /
    • 2007
  • An expansion device plays an important role in optimizing the heat pumps by controlling refrigerant flow and balancing the system pressures. Conventional expansion devices are being gradually replaced with electronic expansion valves due to increasing focus on comfort, energy conservation, and application of a variable speed compressor. In addition, the amount of refrigerant charge in a heat pump is another primary parameter influencing system performance. In this study, the flow characteristics of the expansion devices are analyzed, and the effects of refrigerant charge amount on the performance of the heat pump are investigated at various operating conditions. Cooling capacity of the heat pump system is strongly dependent on load conditions. The heat pump system is very sensitive with a variation of refrigerant charge amount. But, the performance of it can be optimized by adjusting the flow rate through expansion device to maintain a constant superheat at all test conditions.

  • PDF