• Title/Summary/Keyword: Charge transfer compounds

Search Result 62, Processing Time 0.032 seconds

Syntheses and Photofading of Intermolecular Charge-Transfer Complex Dyes of Phenothiazine and Quinonoid Compounds (Phenothiazine과 Quinone계 분자간 전하 이동형 색소의 합성 및 광 퇴색)

  • 김성훈;이순남;임용진
    • Textile Coloration and Finishing
    • /
    • v.4 no.2
    • /
    • pp.64-68
    • /
    • 1992
  • The charge-transfer(CT) complexes derived from phenothiazine as donor and quinonoid compounds as accepters were evaluated as coloring matter. Light fastness of the intermolecular charge-transfer(CT) complex dyes as well as absorption wavelength is an important factor when the complexes are applied to coloring matters. The photofading mechanism of CT complex dyes of phenothiazine and accepters were examined. The addition of effective radical scavenger, antioxidant and photostabilizer gave a remarkable enhancement of the photostability of CT dyes.

  • PDF

Charge Transfer Complex Formation of Amines with Organic Halides (I) (아민과 有機할로겐 化合物間의 Charge Transfer Complex 形成에 關한 硏究 (I))

  • Kim, Yoo-Sun;Oh, Jung-Hee
    • Journal of the Korean Chemical Society
    • /
    • v.11 no.4
    • /
    • pp.121-125
    • /
    • 1967
  • The formation of a charge transfer complex between various amines and organic halogen compounds was closely investigated. A mixture of amine (piperidine, pyridine, diethylamine, ethylamine, triethylamine and triethanolamine) and organic halides(carbon tetrachloride and chloroform) was checked for its UV absorption spectrum in presence of n-hexane solvent. A red shift was observed. The formation of charge transfer complex was observed in the case of triethylamine and diethylamine, whereas the formation of contact complex was distinct in case of piperidine. The relation between the nucleophilicity of amines and their tendency of forming charge transfer complex was discussed.

  • PDF

Chemical Reactivity of N-Iodopyridinium Dichlorodate as a Lubricant Additive (潤滑添加劑로서의 N-Iodopyridinium Dichlorodate의 화학반응성)

  • Moon Tak Jin;Kwon Oh Seung
    • Journal of the Korean Chemical Society
    • /
    • v.19 no.1
    • /
    • pp.43-49
    • /
    • 1975
  • Small amounts of iodine compound in mineral oils are usually effective in reducing friction of metallic surfaces. Such improvement in frictional behaviour of wear characteristics was explained by the formation of a diiodide layer lattice structure at the metallic contact surfaces. The lubrication mechanism, however, by which organoiodine compounds functions is not based on the formation of such lattice structure iodide. It was tested and shown, by a static surface chemical reactivity test, wear and EP tests, and a hot wire method, that compound such as N-iodopyridinium dichlorodate, a double charge transfer complex, reacted with metals as an interhalogen compound and that the resultant thin film product reduced appreciable the friction of metallic surfaces, more than compounds such as methyl iodide, diiodomethane, and iodoform. These results suggest that the action of iodine, included in organoiodine compounds, is not that of a classical layer structure iodide, and an entirely new mechanism may be derived from a further studies on charge transfer complex compounds of organoiodine compounds.

  • PDF

Tetrathiafulvalene (TTF) Charge Transfer Compounds with Some Heavier Transition Metal (Au, Pt, Ir, Os) Chlorides

  • 정찬규;김영인;최성낙
    • Bulletin of the Korean Chemical Society
    • /
    • v.17 no.11
    • /
    • pp.1061-1065
    • /
    • 1996
  • The charge transfer compounds of tetrathiafulvalene (TTF) with the general formula of (TTF)mMCln, (M=Au, Pt, Ir, Os) were prepared by the direct reaction using excess HAuCl4·3H2O, H2PtCl6·xH2O, H2IrCl6·xH2O and H2OsCl6 respectively. The powdered electrical conductivities (σrt) at room temperature are given as follows; (TTF)3AuCl2, 4.53×10-3; (TTF)3.5AuCl2, 6.37×10-3; (TTF)3PtCl4, 5.51×10-4; (TTF)2IrCl4, 2.40×10-5; (TTF)OsCl4·1/2C2H5OH, 4.46×10-7 Scm-1. Magnetic susceptibility, electronic (UV-Vis.), vibrational (IR) and EPR spectroscopic evidences indicate that there is incomplete charge transfer from the TTF donor to gold, platinum, and iridium respectively, and that there is essentially complete charge transfer to osmium, thereby resulting a relatively low electrical conductivity in osmium compound. The EPR and magnetic susceptibility data reflect that the metals are in diamagnetic Au(Ⅰ), Pt(Ⅱ), Ir(Ⅲ), and Os(Ⅱ) oxidation states, and the odd electrons are extensively delocalized over the TTF lattices in each compound.

Synthesis and Characterization of Tetrathiafulvalene Charge Transfer Compounds with Iron and Antimony Halides

  • Kim Young In;Choi Sung Nak;Jung Woo Sung
    • Bulletin of the Korean Chemical Society
    • /
    • v.15 no.6
    • /
    • pp.465-468
    • /
    • 1994
  • The charge transfer compounds $(TTF)_4FeCl_3{\cdot}CH_3OH,\;(TTF)_4SbCl_4\;and\;(TTF)_5(SbBr_4)_2{\cdot}CH_3COCH_3$ were prepared from reactions of the TTF (tetrathiafulvalene) and metal halides. The compounds were characterized by spectroscopic (UV,IR, EPR and XPS) methods, magnetic susceptibility and electrical conductivity measurements. The d.c electrical conductivities of the pressed pellets are in the order of $10^{-1}-10^{-3} Scm^{-1}$, which lies in the range of semiconductor region at room temperature. It means that the partially ionized TTF has stacked in low-dimensional chain in each compound. Spectroscopic properties also indicate that TTF molecules are partially ionized and charge transfer has occurred from (TTF)n to Fe(III) center in $(TTF)_4FeCl_3{\cdot}CH_3OH$ whereas to the $-SbX_4^-$ entity in $(TTF)_4SbCl_4\;and\;(TTF)_5(SbBr_4)_2{\cdot}CH_3COCH_3$. The EPR g values are consistent with TTF radical formation and EPR linewidths suggest the delocalization of unpaired electrons along TTF stacks. A signal arised from metal (Fe and Sb) ions were not detected in EPR spectra, indicating that metal ion is in the diamagnetic state in each compound. The diamagnetic state was also examined by the magnetic susceptibility measurement. The magnetic properties reveal the significant interaction between the $TTF^+$ radical cations in the stacks. The oxidation state of metal ions was also investigated by XPS spectra.

Charge-Transfer Complex Formation between Stilbenes and 7,7,8,8-Tetracyanoquinodimethane

  • Jin, Jung-Il;Kim, Joon-Seop;Kim, Jeong-Deuk
    • Bulletin of the Korean Chemical Society
    • /
    • v.9 no.3
    • /
    • pp.167-171
    • /
    • 1988
  • Formation of intermolecular charge-transfer complexes between 7,7,8,8-tetracyanoquinodimethane (TCNQ) and two different series of stilbene derivatives has been studied spectroscopically at $25^{\circ}$C in 1,2-dichloroethane. The compounds of Series I include stilbene and derivatives which have fused phenyl rings on one end of the central ethylene structure and a phenyl ring on the other end. The other Series, II, is comprised of stilbenes which have various para substituents on one of the two phenyl rings. The equilibrium constant, $K_c^{AD}$ and the molar extinction coefficient, ${\varepsilon}_{\lambda}^{AD}$, were determined using the Scott equation. The values of the charge-transfer transition frequency, ${\vu}_AD$ and $K_c{AD}$ correlated well respectively with the ionization potentials of the fused rings of Series Ⅰ or of the compounds of Series II and with the values of ${\sigma}_p$, the Hammett constants of the Series II substituents. trans-4-N,N-Dimethylaminostilbene and trans-4-nitrostilbene were found to be able to participate in electron transfer reaction with TCNQ forming the corresponding anion radical, TCNQ$^-$:

Theoretical Studies on the Structure and Acidity of Meldrum's Acid and Related Compounds

  • Lee, Ik-Choon;Han, In-Suk;Kim, Chang-Kon;Lee, Hai-Whang
    • Bulletin of the Korean Chemical Society
    • /
    • v.24 no.8
    • /
    • pp.1141-1149
    • /
    • 2003
  • The structures and gas-phase ionization energies (ΔG°) of Meldrum's acid (I) and related cyclic (II-VI) and acyclic compounds (VII-IX) are investigated theoretically at the MP2/6-31+$G^*$, B3LYP/6-31+$G^*$, B3LYP/6- 311+$G^{**}$, B3LYP/6-311++G(3df,2p) and G3(+)(MP2) levels. Conformations of three neutral cyclic series vary gradually from boat (Meldrum's acid, I), to twisted chair (II) and to chair (III) as the methylene group is substituted for the ether oxygen successively. The preferred boat form of I can be ascribed to the two strong $n_O$ → σ* c-c antiperiplanar vicinal charge transfer interactions and electrostatic attraction between negatively charged C¹ and positively charged C⁴at the opposite end of the boat. All the deprotonated anionic forms have half-chair forms due to the two strong $n_C$ → π* c=0 vicinal charge transfer interactions. The dipole-dipole interaction theory cannot account for the higher acidity of Meldrum's acid (I) than dimedone (III). The origin of the anomalously high acidity of I is the strong increase in the vicinal charge transfer ($n_C$ → π* c=0) and 1,4-attrative electrostatic interactions (C¹↔C⁴) in the ionization (I → $I^-$ + $H^+$). In the acyclic series (VII-IX) the positively charged end atom, C⁴, is absent and the attractive electrostatic stabilization (C¹↔C⁴) is missing in the anionic form so that the acidities are much less than the corresponding cyclic series.