• Title/Summary/Keyword: Charging Equipment

Search Result 88, Processing Time 0.03 seconds

A Study on Improvement of Operation Characteristics and Inspection Method of Standby Power Supply such as Emergency Induction Light using Li-ion Capacitor (리튬이온커패시터를 활용한 비상유도등 예비전원장치의 동작 특성 및 점검방법 개선에 관한 연구)

  • Jung, Jun-Chea
    • Journal of the Society of Disaster Information
    • /
    • v.16 no.2
    • /
    • pp.392-401
    • /
    • 2020
  • Purpose: This study analyzes the operating characteristics of a lithium ion capacitor that can be used as a standby power supply in an emergency, and determines whether the standby power supply is abnormal even by measuring the voltage using a linear proportionality characteristic during charging and discharging. The aim is to provide an experimental basis that can be done. Method: As a method for this study, first, analyze the operation principle and characteristics of the existing backup power supply and lithium ion capacitor, and then measure the voltage of the lithium ion capacitor according to the configuration and system block diagram of the induction lamp used in the experiment. We proceed with the test of the measured value of discharge power for each voltage band to check the amount of power held by the battery and the operation test experiment using induction lamps. Results: Just by checking the charging voltage using the linear proportional characteristics of lithium ion capacitors, it provides a basis for accurately inferring the effective operating time of induction lamp lamps. Conclusion: In the event of a disaster, the lithium ion capacitor is used as a spare power supply for emergency induction lamps to prevent complete discharge of emergency induction lamps, to prevent the problem of performing normal operation of the standby power supply, and to use only a simple voltage measurement to reserve power. It was intended to suggest many uses for evacuation equipment application in the future by making it possible to check whether the device is abnormal.

Study on Hydrogen Embrittlement for API 5L X65 Steel Using Small Punch Test I : Base Metal (소형펀치 시험을 이용한 API 5L X65 강의 수소취화에 관한 연구 I : 모재부)

  • Jang, Sang-Yup;Yoon, Kee-Bong
    • Journal of Energy Engineering
    • /
    • v.18 no.1
    • /
    • pp.49-55
    • /
    • 2009
  • Occurrence of hydrogen embrittlement could be one of the main obstacles for using structural equipment under hydrogen environment. It is required to develop assessment methods of hydrogen embrittlement for the metals used in production, storage, transmission and application utilities of hydrogen. The most probable method of hydrogen mass transmission is using existing natural gas pipeline. Base or weld part of the pipeline can be damaged by mixed gas of hydrogen in the pipeline. In this study small punch (SP) testing was employed to evaluate the hydrogen embrittlement behavior for a line pipe steel (API X65) with electrochemically hydrogen charged specimens. Results showed that the SP test can be a good candidate test method for hydrogen damage evaluation method. Strength of steel is known to be decreased with the level of hydrogen charging. However, for API X65 steel base metal need in this study, the effect of hydrogen to strength was not significant. It can be negligible regardless of the hydrogen contents in the steel. With this test different strength levels with various hydrogen charging conditions were observed. It can also be anticipated that more sensitive evaluation of material behavior be obtainable by the SP test method.

Analysis of Charging Phenomenon of 2-Cavity Die Casting for Automobile's Valve Housing (자동차 VALVE HOUSING용 2-CAVITY 다이캐스팅의 충전 현상 분석)

  • Lee, Jong-Hyung;Yoon, Jong-Cheul;Yoo, Duck-Sang;Lee, Chang-Heon;Ha, Hong-Bae
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.9 no.1
    • /
    • pp.61-66
    • /
    • 2006
  • In perspective of saving natural resource and energy, today's automobiles are in process of regenerating by smaller and lighter. In order to achieve the sufficiency on the consumption of the fuel, new mechanism and new assembly are required. Therefore the expectations on the new materials are very high. Especially, AI materials are widely used to reduce the weight. AI that is used in automobiles is mostly casting material, and according to the innovation of technique is in rapid development. AI Die casting is an important field as today's trend of lightweight on automobiles. One of the parts in steering system, Valve Housing plays a role of reduce the operating effort of drivers. Unfortunately, the Valve Housing which is widely reliable to the most automobiles are not developed at this moment in our automobile industry. Therefore, they are produced by casting method which cost three times or even more expensive in production. If Valve Housing, which is a part of steering system is produced by Gravity Casting, the space that manufacturing equipment will be increased, and more time and workers would be brought into service. For such reason, Die Casting would replace Gravity Casting in order to minimize cost of time, manpower, and working space.

  • PDF

The Development and Performance Analysis of Compact Type Solar Thermal/Ground Coupled Heat Pump Hybrid System for Heating, Cooling and Hot water (콤팩트형 태양열/지열히트펌프 하이브리드 냉난방 및 급탕 시스템 개발 및 성능분석)

  • Baek, Nam-Choon;Jeong, Seon-Yeong;Yoon, Eung-Sang;Lee, Kyoung-Ho
    • Journal of the Korean Solar Energy Society
    • /
    • v.32 no.5
    • /
    • pp.59-67
    • /
    • 2012
  • In this study,the compact type solar thermal and ground coupled heat pump hybrid system for space heating/cooling and hot water supply has been developed. This hybrid system was installed in Zero Energy Solar House(ZeSH) in KIER for the demonstration. The thermal performance and operational characteristics of this hybrid system were analysed especially. The results are as follows. (1) This hybrid system was designed in order to address the existing disadvantages of solar thermal/ground coupled heat pump system. For this design, all parts except solar collector and ground coupled heat pump were integrated into a single product in a factory. The compact type unit includes two buffer tanks, an expansion tank, pumps, valves, a controller, etc. This system has an advantage of easy installation with simple plumbing work even in narrow space. (2) The thermal charging and discharging time of the buffer tanks and its characteristics by ground coupled heat pump, and heat pump COP according to geo-source temperature and buffer storage temperature have been studied. This system was found to meet well to the heat load without any other auxiliary heating equipment. (3) The operating hours of the ground coupled heat pump as a backup device of solar thermal can be reduced significantly by using solar heat. It was also found that the minimum heating water supply setting temperature and maximum cooling water supply setting temperature make an influence on the heat pump COP. The lower heating water and the higher cooling water temperature, the higher COP. In this respect, the hybrid system's performance can be improved in ZeSH than conventional house.

Experimental Study on the Operating Characteristics of an Environmental Control System for Avionic Equipments (항공장비용 환경제어시스템의 운전특성에 관한 실험적 연구)

  • Park, Hyung-Pil;Kang, Hoon;Chi, Yong-Nam;Choi, Hee-Ju;Byeon, Young-Man;Kim, Young-Jin;Oh, Kwang-Yoon;Kim, Yong-Chan
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.34 no.9
    • /
    • pp.809-816
    • /
    • 2010
  • An environmental control system is installed to dissipate the thermal load in avionic equipments that are mounted under an aircraft. The operating characteristics of the system change with variations in the control parameters. In this study, an environmental control system was designed and built using R-124 by adopting a vapor compression cycle. The operating characteristics of this system were observed by varying the control parameters, such as refrigerant charging amount, opening of the expansion device, compressor rotation speed, and blower rotation speed. The effect of the control parameters on the environmental control system was analyzed and an optimum control method was identified.

Thermal-hydraulic Analysis of Operator Action Time on Coping Strategy of LUHS Event for OPR1000 (OPR1000형 원전의 최종열제거원 상실사고 대처전략 및 운전원 조치 시간에 따른 열수력 거동 분석)

  • Song, Jun Kyu
    • Journal of the Korean Society of Safety
    • /
    • v.35 no.5
    • /
    • pp.121-127
    • /
    • 2020
  • Since the Fukushima nuclear accident in 2011, the public were concerned about the safety of Nuclear Power Plants (NPPs) in extreme natural disaster situations, such as earthquakes, flooding, heavy rain and tsunami, have been increasing around the world. Accordingly, the Stress Test was conducted in Europe, Japan, Russia, and other countries by reassessing the safety and response capabilities of NPPs in extreme natural disaster situations that exceed the design basis. The extreme natural disaster can put the NPPs in beyond-design-basis conditions such as the loss of the power system and the ultimate heat sink. The behaviors and capabilities of NPPs with losing their essential safety functions should be measured to find and supplement weak areas in hardware, procedures and coping strategies. The Loss of Ultimate Heat Sink (LUHS) accident assumes impairment of the essential service water system accompanying the failure of the component cooling water system. In such conditions, residual heat removal and cooling of safety-relevant components are not possible for a long period of time. It is therefore very important to establish coping strategies considering all available equipment to mitigate the consequence of the LUHS accident and keep the NPPs safe. In this study, thermal hydraulic behavior of the LUHS event was analyzed using RELAP5/Mod3.3 code. We also performed the sensitivity analysis to identify the effects of the operator recovery actions and operation strategy for charging pumps on the results of the LUHS accident.

Toroidal-Shaped Coils for a Wireless Power Transfer System for an Unmanned Aerial Vehicle

  • Park, Jaehyoung;Kim, Jonghoon;Shin, Yujun;Park, Bumjin;Kim, Won-Seok;Cheong, Seok-Jong;Ahn, Seungyoung
    • Journal of electromagnetic engineering and science
    • /
    • v.19 no.1
    • /
    • pp.48-55
    • /
    • 2019
  • Unmanned aerial vehicles (UAVs) using communications, sensors, and navigation equipment will play a key role in future warfare. Currently, UAVs are monitored to prevent misfire and accidents, and the conventional method adopted uses wires for data transmission and power supply. The repeated connection and disconnection of cables increases maintenance time and harms the connector. For convenience and stability, a wireless power transfer system to power UAVs is needed. Unlike other wireless power transfer (WPT) applications, the size of the receiving coils must be small, so that the WPT systems can be embedded inside space-limited UAVs. The small size reduces the coupling coefficient and transfer efficiency between the transmitting and the receiving coils. In this study, we propose a toroidal-shaped coil for a WPT system for UAVs with high coupling coefficient with minimum space requirements. For validation, conventional coils and the proposed toroidal-shaped coil were used and their coupling coefficient and power transfer efficiency were compared using simulated and measured results. The simulated and measured results were strongly correlated, confirming that the proposed WPT system significantly improved efficiency with negligible change in the space requirement.

Design of Simulated Photovoltaic Power Streetlight for Education using Renewable Energy Utilization and Storage Function (신재생에너지 활용 및 저장기능을 이용한 교육용 모의 태양광발전 가로등 설계)

  • Yoon, Yongho
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.21 no.2
    • /
    • pp.137-142
    • /
    • 2021
  • A Photovoltaic power streetlight is a system that uses solar energy to charge a secondary battery and then uses it for night lighting through a lamp, and can be configured as a standalone or grid-connected type by installing an LED streetlight at the load end. The energy generated through the solar cell module can be charged to the secondary battery through the charge/discharge control device, and then the LED street light can be turned on and off by comparing the power generation voltage and the charging voltage according to the monitoring of solar radiation, or by setting a specific time after sunset or sunrise. Based on these contents, this paper designed and manufactured a simulated solar power streetlight for education using new and renewable energy utilization and storage functions. Using these educational equipment, students can 1) understand the flow of energy change using renewable energy including sunlight as electric energy, 2) understand new and renewable energy, and cultivate basic design and manufacturing application power of related products, 3) The use of new and renewable energy through power conversion and strengthening of practical training and analysis through hardware production can be instilled.

Integrated Power Optimization with Battery Friendly Algorithm in Wireless Capsule Endoscopy

  • Mehmood, Tariq;Naeem, Nadeem;Parveen, Sajida
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.11
    • /
    • pp.338-344
    • /
    • 2021
  • The recently continuous enhancement and development in the biomedical side for the betterment of human life. The Wireless Body Area Networks is a significant tool for the current researcher to design and transfer data with greater data rates among the sensors and sensor nodes for biomedical applications. The core area for research in WBANs is power efficiency, battery-driven devices for health and medical, the Charging limitation is a major and serious problem for the WBANs.this research work is proposed to find out the optimal solution for battery-friendly technology. In this research we have addressed the solution to increasing the battery lifetime with variable data transmission rates from medical equipment as Wireless Endoscopy Capsules, this device will analyze a patient's inner body gastrointestinal tract by capturing images and visualization at the workstation. The second major issue is that the Wireless Endoscopy Capsule based systems are currently not used for clinical applications due to their low data rate as well as low resolution and limited battery lifetime, in case of these devices are more enhanced in these cases it will be the best solution for the medical applications. The main objective of this research is to power optimization by reducing the power consumption of the battery in the Wireless Endoscopy Capsule to make it battery-friendly. To overcome the problem we have proposed the algorithm for "Battery Friendly Algorithm" and we have compared the different frame rates of buffer sizes for Transmissions. The proposed Battery Friendly Algorithm is to send the images on average frame rate instead of transmitting the images on maximum or minimum frame rates. The proposed algorithm extends the battery lifetime in comparison with the previous baseline proposed algorithm as well as increased the battery lifetime of the capsule.

Risk Assessment for High Capacity Multiport Hydrogen Refueling Station (대용량 멀티포트 동시 충전 기반 수소충전소 안전성 평가 연구)

  • CHOONGHEE JOE;SEUNGKYU KANG;BUSEUNG KIM;KYUNGSIK LEE
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.34 no.5
    • /
    • pp.505-513
    • /
    • 2023
  • Hydrogen infrastructure is expanding. High-capacity hydrogen refueling stations offer advantages because they can refuel a variety of light and heavy-duty vehicles, and multi-port refueling technology is developing to reduce charging time for heavy-duty vehicles. In this study, we suggest directions to lower the risk by analyzing the risk factors for each process involved in the installation of a high-capacity multi-port hydrogen refueling station in Changwon city. We conducted both qualitative and quantitative risk assessments of the equipment to evaluate the station. A hazard and operability study was performed for qualitative risk assessment, and PHAST/SAFETI were used for quantitative risk assessment. Quantitative risk assessment was used to calculate the consequence analysis of the facility to ensure secure design prior to station development and to predict individual and societal risks in various scenarios. As a result, the station's risk level was determined to be as low as reasonably practicable.