• Title/Summary/Keyword: Charging rate

Search Result 300, Processing Time 0.027 seconds

Evaluation of the Charging effects of Plug-in Electrical Vehicles on Power Systems, taking Into account Optimal Charging Scenarios (전기자동차의 충전부하 모델링 및 충전 시나리오에 따른 전력계통 평가)

  • Moon, Sang-Keun;Gwak, Hyeong-Geun;Kim, Jin-O
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.6
    • /
    • pp.783-790
    • /
    • 2012
  • Electric Vehicles(EVs) and Plug-in Hybrid Electric Vehicles(PHEVs) which have the grid connection capability, represent an important power system issue of charging demands. Analyzing impacts EVs charging demands of the power system such as increased peak demands, developed by means of modeling a stochastic distribution of charging and a demand dispatch calculation. Optimization processes proposed to determine optimal demand distribution portions so that charging costs and demand can possibly be managed. In order to solve the problems due to increasing charging demand at the peak time, alternative electricity rate such as Time-of-Use(TOU) rate has been in effect since last year. The TOU rate would in practice change the tendencies of charging time at the peak time. Nevertheless, since it focus only minimizing costs of charging from owners of the EVs, loads would be concentrated at times which have a lowest charging rate and would form a new peak load. The purpose of this paper is that to suggest a scenario of load leveling for a power system operator side. In case study results, the vehicles as regular load with time constraints, battery charging patterns and changed daily demand in the charging areas are investigated and optimization results are analyzed regarding cost and operation aspects by determining optimal demand distribution portions.

Charging Behavior Analysis of Electric Vehicle (전기자동차 충전행태분석)

  • PARK, Kyuho;JEON, Hyeonmyeong;JUNG, Kabchae;SON, Bongsoo
    • Journal of Korean Society of Transportation
    • /
    • v.35 no.3
    • /
    • pp.210-219
    • /
    • 2017
  • Electric vehicles, which are attracting attention as eco-friendly vehicles, have been increasing in number since 2011 in Korea. The purpose of this study is to analyze the efficient operation of existing charging stations and factors to consider when installing additional charging stations based on the case of Jeju Island where the electric vehicle penetration rate is high and the charging infrastructure is relatively well established. The characteristics of using electric car charging stations by region, type of facility, and time of day are analyzed. As a result of analyzing the frequency of using the charger installed in Jeju Island, the utilization of both the fast charger and the slow charger is found to be concentrated in a specific area. The usage rate of charger installed in a business facility and a public parking lot is high in both fast charger and slow charger. However, according to the usage rate by time of day, the fast charger has a high utilization rate throughout the afternoon, while the use of a slow charger is concentrated in the morning. In order to enable users to utilize the electric vehicle charging station efficiently, it is necessary to provide a publicity guide for the charging station having a low utilization rate, a notice for using the charger, and a notification of completion of charging. Considering the charging demand, the area where the charger is not yet installed should be considered as the area to install the charger, and in addition, the additional installation should be considered in the area and the facility where the amount of charge is large. Service improvement is expected to be possible by utilizing actual electric vehicle charging behavior analysis result.

Analysis for Evaluating the Impact of PEVs on New-Town Distribution System in Korea

  • Choi, Sang-Bong
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.3
    • /
    • pp.859-864
    • /
    • 2015
  • This paper analyzes the impact of Plug-in Electric vehicles(PEVs) on power demand and voltage change when PEVs are connected to the domestic distribution system. Specifically, it assesses PEVs charging load by charging method in accordance with PEVs penetration scenarios, its percentage of total load, and voltage range under load conditions. Concretely, we develop EMTDC modelling to perform a voltage distribution analysis when the PEVs charging system by their charging scenario was connected to the distribution system under the load condition. Furthermore we present evaluation algorithm to determine whether it is possible to adjust it such that it is in the allowed range by applying ULTC when the voltage change rate by PEVs charging scenario exceed its allowed range. Also, detailed analysis of the impact of PEVs on power distribution system was carried out by calculating existing electric power load and additional PEVs charge load by each scenario on new-town in Korea to estimate total load increases, and also by interpreting the subsequent voltage range for system circuits and demonstrating conditions for countermeasures. It was concluded that total loads including PEVs charging load on new-town distribution system in Korea by PEVs penetration scenario increase significantly, and the voltage range when considering ULTC, is allowable in terms of voltage tolerance range up to a PEVs penetration of 20% by scenario. Finally, we propose the charging capacity of PEVs that can delay the reinforcement of power distribution system while satisfying the permitted voltage change rate conditions when PEVs charging load is connected to the power distribution system by their charging penetration scenario.

Particle Charging and Collection in Two-Stage, Parallel-Plate Electrostatic Precipitators (2단 평행판 정전식 집진기에서의 입자하전 및 포집)

  • 오명도;유경훈;이준식
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.2
    • /
    • pp.432-445
    • /
    • 1994
  • From a theoretical analysis point of view, the 2-stage precipitator is decomposed into two units: charging cell and collecting cell. Collection efficiency predictions of the two-stage parallel-plate electrostatic precipitator have been performed theoretically incorporating with the charging and the collecting cells. Particle trajectorise passing the charging cell have been modeled as a simple one. Particle charge distribution at the outlet of the charging cell is calculated through integration of the present unipolar combined charging rate along the entire particle trajectory, and average charge of particles at the outlet of the charging cell is obtained from the particle charge distribution. As for the collecting cell, the diminution of particle concentration along the longitudinal direction of the collecting cell is investigated considering the conventional Deutsch's theory and the laminar theory. One should note that the collection efficiency formula derived is based on monodisperse aerosols. It has been confirmed through the analysis that predictions of particle charge by applying White's unipolar diffusion charging theory overpredict actual cases in the continuum regime, while predictions by Fuch's unipolar diffusion charging theory indicate the reasonable result in the same regime. Theoretical predictions of collection efficiency are also compared with the available experimental results. Comparisons show that the experimental results are consistently located in the collection efficiency region bounded by the two limits, the Deutsch and the laminar collection efficiencies. Finally design parameters of the 2-stage electrostatic precipitator have been investigated systematically through the one-variable-at-a-time method in terms of collection efficiency. Applied voltages on the corona wire of the charging cell and the plate of the collecting cell, and the average air velocity have been selected as the design parameters.

New Prediction of the Number of Charging Electric Vehicles Using Transformation Matrix and Monte-Carlo Method

  • Go, Hyo-Sang;Ryu, Joon-Hyoung;Kim, Jae-won;Kim, Gil-Dong;Kim, Chul-Hwan
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.1
    • /
    • pp.451-458
    • /
    • 2017
  • An Electric Vehicle (EV) is operated with the electric energy of a battery in place of conventional fossil fuels. Thus, a suitable charging infrastructure must be provided to expand the use of electric vehicles. Because the battery of an EV must be charged to operate the EV, expanding the number of EVs will have a significant influence on the power supply and demand. Therefore, to maintain the balance of power supply and demand, it is important to be able to predict the numbers of charging EVs and monitor the events that occur in the distribution system. In this paper, we predict the hourly charging rate of electric vehicles using transformation matrix, which can describe all behaviors such as resting, charging, and driving of the EVs. Simulation with transformation matrix in a specific region provides statistical results using the Monte-Carlo Method.

A Pulser System with Parallel Spark Gaps at High Repetition Rate

  • Lee, Byung-Joon;Nam, Jong-Woo;Rahaman, Hasibur;Nam, Sang-Hoon;Ahn, Jae-Woon;Jo, Seung-Whan;Kwon, Hae-Ok
    • Journal of IKEEE
    • /
    • v.15 no.4
    • /
    • pp.305-312
    • /
    • 2011
  • A primary interest of this work is to develop an efficient and powerful repetitive pulser system for the application of ultra wide band generation. The important component of the pulser system is a small-sized coaxial type spark gap with planar electrodes filled with SF6 gas. A repetitive switching action by the coaxial spark gap generates two consecutive pulses in less than a microsecond with rise times of a few hundred picoseconds (ps). A set of several parameters for the repetitive switching of the spark gap is required to be optimized in charging and discharging systems of the pulser. The parameters in the charging system include a circuit scheme, circuit elements, the applied voltage and current ratings from power supplies. The parameters in the discharging system include the spark gap geometry, electrode gap distance, gas type, gas pressure and the load. The characteristics of the spark gap discharge, such as breakdown voltage, output current pulse and recovery rate are too dynamic to control by switching continuously at a high pulse repetition rate (PRR). This leads to a low charging efficiency of the spark gap system. The breakthrough of the low charging efficiency is achieved by a parallel operation of two spark gaps system. The operational behavior of the two spark gaps system is presented in this paper. The work has focused on improvement of the charging efficiency by scaling the PRR of each spark gap in the two spark gaps system.

A Charging Mechanism in the System Interworking between Wireless LANs and Cellular Networks (무선 LAN과 이동통신망을 연동하는 통합 시스템에서의 과금 방안)

  • 이완연;박찬영
    • Journal of KIISE:Information Networking
    • /
    • v.31 no.1
    • /
    • pp.53-61
    • /
    • 2004
  • In this paper, we investigate a charging mechanism for the system interworking between Wireless Local Area Networks(LANs) and Cellular Networks. Because the charging mechanisms of the two networks are different, a unified charging mechanism is required to correlate the charging informations of the two networks in the system interworking. Therefore, we propose a unified charging mechanism to collect charging information with a combined identifier. Also, we propose a decision method to control the interval of transferring accounting information according to the charging types of users (pre-paid, off-paid, and fixed-rate) and show that the proposed decision method improves the granularity and the communication efficiency of charging informations.

Characteristics of Unipolar Charging of the Submicron Particles by the Condensation-Evaporation Method (응축 증발법을 통한 서브마이크론 입자의 단극하전 특성)

  • Choi, Young-Joo;Kim, Sang-Soo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.30 no.2 s.245
    • /
    • pp.186-192
    • /
    • 2006
  • We applied a new charging system using the condensation and evaporation method to charge the submicron particles with a uniform charging performance. The monodispersed NaCl submicron particles were condensed by n-butanol vapor and grew up to micron droplets with a same size, regardless of their initial size. Those condensed droplets were charged in an indirect corona charger. The indirect corona charger consisted of the ion generation zone and the particle charging zone. In the ion generation zone, Ions were generated by corona discharge and some of them moved into the particle charging zone by a carrier gas and mixed with the condensed droplet. And finally, the charged and condensed droplets dried through an evaporator to shrink to their original size. The average charge and penetration rate of the particles before and after evaporation were measured by CPC and aerosol electrometer and compared with those of a conventional corona charger. The results showed that the average charge was $5\~7$ charges and the penetration rate was over $90\%$, regardless of the initial particle size.

Analysis of Construction Plans of Rapid Charging Infrastructures based on Gas Stations in Rural Areas to Propagate Electric Vehicles (전기자동차 보급을 위한 농촌지역의 주유소 기반 급속 충전인프라 구축 방안 분석)

  • Kim, Solhee;Kim, Taegon;Suh, Kyo
    • Journal of Korean Society of Rural Planning
    • /
    • v.21 no.1
    • /
    • pp.19-28
    • /
    • 2015
  • As environmental concerns including climate change drive the strong regulations for car exhaust emissions, electric vehicles attract the public eye. The purpose of this study is to identify rural areas vulnerable for charging infrastructures based on the spatial distributions of the current gas stations and provide the target dissemination rates for promoting electric cars. In addition, we develop various scenarios for finding optimal way to expand the charging infrastructures through the administrative districts data including 11,677 gas stations, the number of whole national gas stations. Gas stations for charging infrastructures are randomly selected using the Monte Carlo Simulation (MCS) method. Evaluation criteria for vulnerability assessment include five considering the characteristic of rural areas. The optimal penetration rate is determined to 21% in rural areas considering dissemination efficiency. To reduce the vulnerability, the charging systems should be strategically installed in rural areas considering geographical characteristics and regional EV demands.

Determining the Proper Capacity of Electric Vehicle Charging Station (전기자동차 충전소의 적정 용량 결정)

  • Hong, Jun-Hee;Choi, Jung-In;Lee, Jong-Hyun;Nam, Young-Woo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.10
    • /
    • pp.1911-1915
    • /
    • 2009
  • The problem of determining the proper capacity of electric vehicle charging station is studied in the presented paper. Based on the expected arrival rate and the expected charging time, we calculate the proper capacity that guarantees electric vehicles get service better than a given lower bound which is termed the loss of charging probability. The problem is studied by using certain queueing models. We first formulate the problem as a queueless model of type M/M/n/n, known as the Erlang loss system. And then the M/M/n/K type queueing model is formulated to consider the parking space constraint. Results of the study may be used for designing the electric vehicle charging station.