• Title/Summary/Keyword: Chemical genomics

Search Result 145, Processing Time 0.036 seconds

Scutellaria baicalensis Georgi Extracts inhibit RANKL-induced Osteoclast Differentiation

  • Shim, Ki-Shuk;Kim, Soon-Nam;Kim, Myung-Hee;Kim, Young-Sup;Ryu, Shi-Yong;Min, Yong-Ki;Kim, Seong-Hwan
    • Natural Product Sciences
    • /
    • v.14 no.3
    • /
    • pp.182-186
    • /
    • 2008
  • Scutellaria baicalensis Georgi (SBG) is traditionally used medicinal herb that has anti-oxidant, anticancer and anti-inflammatory effects. In this study, we investigated whether the extracts of SBG have the inhibitory activity in the osteoclast differentiation by using mouse monocytes RAW264.7 cells and primary mouse bone marrow-derived macrophages (BMMs). Methanol extract (ME) from SBG was successively fractionated into methylene chloride (MF), ethylacetate (EF) and n-butanol fraction (BF). The activity assay for tartrateresistant acid phosphatase (TRAP) and Western blot analysis were employed to evaluate the osteoclasts differentiation and the activation of mitogen-activated protein (MAP) kinases, respectively. ME, MF, EF and BF significantly and dose-dependently inhibited osteoclast differentiation without the decrease of cell viability at the concentrations used in this study. In addition, ME significantly inhibited the activation of c-jun-N-terminal kinase (JNK). In conclusion, this study firstly demonstrated that ME of SBG has the potential to inhibit the osteoclast differentiation through the suppression of JNK activation partially.

Chemical Genomics with Natural Products

  • Jung, Hye-Jin;Ho, Jeong-Kwon
    • Journal of Microbiology and Biotechnology
    • /
    • v.16 no.5
    • /
    • pp.651-660
    • /
    • 2006
  • Natural products are a rich source of biologically active small molecules and a fertile area for lead discovery of new drugs [10, 52]. For instance, 5% of the 1,031 new chemical entities approved as drugs by the US Food and Drug Administration (FDA) were natural products between 1981 and 2002, and another 23% were natural product-derived molecules [53]. These molecules have evolved through millions of years of natural selection to interact with biomolecules in the cells or organisms and offer unrivaled chemical and structural diversity [14, 37]. Nonetheless, a large percentage of nature remains unexplored, in particular, in the marine and microbial environments. Therefore, natural products are still major valuable sources of innovative therapeutic agents for human diseases. However, even when a natural product is found to exhibit biological activity, the cellular target and mode of action of the compound are mostly mysterious. This is also true of many natural products that are currently under clinical trials or have already been approved as clinical drugs [11]. The lack of information on a definitive cellular target for a biologically active natural product prevents the rational design and development of more potent therapeutics. Therefore, there is a great need for new techniques to expedite the rapid identification and validation of cellular targets for biologically active natural products. Chemical genomics is a new integrated research engine toward functional studies of genome and drug discovery [40, 69]. The identification and validation of cellular receptors of biologically active small molecules is one of the key goals of the discipline. This eventually facilitates subsequent rational drug design, and provides valuable information on the receptors in cellular processes. Indeed, several biologically crucial proteins have already been identified as targets for natural products using chemical genomics approach (Table 1). Herein, the representative case studies of chemical genomics using natural products derived from microbes, marine sources, and plants will be introduced.

Inhibitory Effects of Saururus Chinensis Extracts on Osteoclast Differentiation

  • Shim, Ki-Shuk;Kim, Soon-Nam;Kim, Myung-Hee;Kim, Young-Sup;Ryu, Shi-Yong;Min, Yong-Ki;Kim, Seong-Hwan
    • Natural Product Sciences
    • /
    • v.14 no.2
    • /
    • pp.113-117
    • /
    • 2008
  • Saururus chinensis is a commonly used folk herb for the treatment of edema and liver diseases in Korea. To study the biological activity of Saururus chinensis in bone metabolism, we evaluated the effect of its extracts on osteoclast differentiation in vitro using primary mouse bone marrow-derived macrophages. Methanol extract (ME) from dried roots of Saururus chinensis was partitioned into methylene chloride (MF), ethyl acetate (EF), n-butanol (BF) and water fractions (WF). Tartrate-resistance acid phosphatase (TRAP) activity assay and western blot analysis were performed to determine the effect on osteoclast differentiation and mitogen-activated protein (MAP) kinases activation. ME, MF and EF dramatically inhibited receptor activator of ${NF-kB}$ ligand (RANKL)-induced formation of multinucleated osteoclasts and activation of MAP kinases. This study firstly demonstrated that ME, MF and EF of Saururus chinensis have the potential to inhibit the osteoclast differentiation, which results from the inhibition of MAP kinases activations in part.