• Title/Summary/Keyword: Chemical immobilization

Search Result 337, Processing Time 0.031 seconds

Conducting Polymer-Silica Composites for Immobilization of Enzymes

  • Kwon, Sang-Woon;Jeong, Bo-Ock;Lee, Eun-Hee;Kim, Yong-Shin;Jung, Yong-Ju
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.5
    • /
    • pp.1593-1596
    • /
    • 2012
  • A new enzyme immobilization method based on hydrophobic interaction between supporting material and enzyme has been successfully developed. The efficacy of the new technique has been investigated by loading a horse radish peroxidase (HRP) enzyme on the surface of conducting polymer-silica composites and by measuring the enzyme activity and leaching property of HRP loaded within polymer-silica composites. The immobilized HRP enzyme showed activity profiles similar to that of free HRP in phosphate buffer (pH 6). Above all, HRP adsorbed on the polymer-silica composites has showed excellent stability over 10 days, compared to HRP adsorbed on the pristine silica. It is thought that with appropriate optimization works, the present method would be used as a cost-effective and facile route for the immobilization of biomolecules.

Performance of PEG on immobilization of zero valent metallic particles on PVDF membrane for nitrate removal

  • Chan, Yi Shee;Chan, Mieow Kee;Ngien, Su Kong;Chew, Sho Yin;Teng, Yong Kang
    • Membrane and Water Treatment
    • /
    • v.9 no.1
    • /
    • pp.1-7
    • /
    • 2018
  • The principal objective of this study is to investigate the effect of Polyethylene Glycol (PEG) crosslinking in Polyvinylidene Fluoride (PVDF) in immobilization of Fe and bimetallic Fe/Cu and Cu/Fe zero valent particles on the membrane and its efficiency on removal of nitrate in wastewater. PVDF/PEG polymer solution of three weight compositions was prepared to manipulate the viscosity of the polymer. PEG crosslinking was indirectly controlled by the viscosity of the polymer solution. In this study, PEG was used as a modifier of PVDF membrane as well as a cross-linker for the immobilization of the zero valent particles. The result demonstrates improvement in immobilization of metallic particles with the increase in crosslinking of PEG. Nitrate removal efficiency increases too.

Optimization of Lipase Pretreatment Prior to Lipase Immobilization to Prevent Loss of Activity

  • Lee, Dong-Hwan;Kim, Jung-Mo;Shin, Hyun-Yong;Kim, Seung-Woo
    • Journal of Microbiology and Biotechnology
    • /
    • v.17 no.4
    • /
    • pp.650-654
    • /
    • 2007
  • In our previous work, a method of pretreating lipase was developed to prevent loss of its activity during covalent immobilization. In this study, Rhizopus oryzae lipase was pretreated before immobilization and then immobilized on a silica gel surface. The effects of the various materials and conditions used in the pretreatment stage on the activity of immobilized lipase were investigated. Immobilized lipase pretreated with 0.1% of soybean oil had better activity than those pretreated with other materials. The optimal temperature, agitation speed, and pretreating time for lipase pretreatment were determined to be $40^{\circ}C$, 200rpm, and 45min, respectively. The activity of immobilized soybean oil pretreated lipase was 630U/g matrix, which is 20 times higher than that of immobilized non-pretreated lipase. In addition, immobilized lipase activity was maintained at levels exceeding 90% of its original activity after 10 reuses.

Immobilization of Xylanase Using a Protein-Inorganic Hybrid System

  • Kumar, Ashok;Patel, Sanjay K.S.;Mardan, Bharat;Pagolu, Raviteja;Lestari, Rowina;Jeong, Seong-Hoon;Kim, Taedoo;Haw, Jung Rim;Kim, Sang-Yong;Kim, In-Won;Lee, Jung-Kul
    • Journal of Microbiology and Biotechnology
    • /
    • v.28 no.4
    • /
    • pp.638-644
    • /
    • 2018
  • In this study, the immobilization of xylanase using a protein-inorganic hybrid nanoflower system was assessed to improve the enzyme properties. The synthesis of hybrid xylanase nanoflowers was very effective at $4^{\circ}C$ for 72 h, using 0.25 mg/ml protein, and efficient immobilization of xylanase was observed, with a maximum encapsulation yield and relative activity of 78.5% and 148%, respectively. Immobilized xylanase showed high residual activity at broad pH and temperature ranges. Using birchwood xylan as a substrate, the $V_{max}$ and $K_m$ values of xylanase nanoflowers were 1.60 mg/ml and $455{\mu}mol/min/mg$ protein, compared with 1.42 mg/ml and $300{\mu}mol/min/mg$ protein, respectively, for the free enzyme. After 5 and 10 cycles of reuse, the xylanase nanoflowers retained 87.5% and 75.8% residual activity, respectively. These results demonstrate that xylanase immobilization using a proteininorganic hybrid nanoflower system is an effective approach for its potential biotechnological applications.

Immobilization of MTBE using cyclodextrins

  • Baek, Ki-Tae;Yang, Ji-Won
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2003.04a
    • /
    • pp.120-123
    • /
    • 2003
  • Immobilization behavior of methyl tert-butyl ether (MTBE) by various cyclodextrins(CDs) was studied to investigate the feasibility of MTBE removal using cyclodexrins. Even though MTBE has relatively low hydrophobicity and higher polarity compared to other organics, it was effectively immobilized by CDs. The immobilization isotherms was shown as a type of Freundlich isotherms, and the immobilization capacity of -CDs was the largest among natural COs. The initial apparent association constant for MTBE-CD complex follows the order : gamma = beta > methyl-beta > hydroxypropyl beta > alpha. These differences of the constants are related to the size of MTBE and CDs. The size of beta-CD and gamma-CD is large to encapsulate MTBE molecule into the cavity, which that of alpha-CB is too small to encapsulate MTBE.

  • PDF

Fabrication of Protein A-Viologen Hetero Langmuir- Blodgett Film for Fluorescence Immunoassay

  • Lee, Woochang;Chun, Bum-Suk;Oh, Byung-Keun;Lee, Won-Hong;Park, Jeong-Woo
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.9 no.4
    • /
    • pp.241-244
    • /
    • 2004
  • Protein A molecular thin film was fabricated as a platform of antibody-based biosensor. For the immobilization of the protein A thin film, a viologen multilayer was built up using the Langmuir-Blodgett (LB) technique, and then, protein A was adsorbed on the viologen LB film by an electrostatic interaction force, which was formed as a hetero-film structure. For the deposition of viologen, surface pressure area ($\pi$-A) isotherm was investigated. The fabricated protein A-viologen hetero LB film was investigated using atomic force microscopy (AFM). Using the developed molecular film, antibody immobilization and fluorescence measurement was carried out.