• Title/Summary/Keyword: Chemical vapor deposition polymerization

Search Result 15, Processing Time 0.026 seconds

Chemical Vapor Deposition Polymerization of Poly(arylenevinylene)s and Applications to Nanoscience

  • Joo, Sung-Hoon;Lee, Chun-Young;Kim, Kyung-kon;Lee, Ki-Ryong;Jin, Jung-Il
    • Bulletin of the Korean Chemical Society
    • /
    • v.27 no.2
    • /
    • pp.169-184
    • /
    • 2006
  • A review is made on the chemical vapor deposition polymerization (CVDP) of insoluble and infusible poly(arylenevinylene)s and its applications to nanoscience. Poly(p-phenylenevinylene) (PPV), poly(naphthylenevinylene)s, poly(2,5-thinenylenevinylene) (PTV), and other homologous polymers containing oligothiophenes could be prepared by the CVDP method in the form of films, tubes, and fibers of nano dimensions. They would be readily converted to graphitic carbons of different structures by thermal treatment. Field emission FE) of carbonized PPV nanotubes, photoconductivity of carbonized PPV/PPV bilayer nanotubes and nanofilms also were studied.

Selective Vapor-Phase Deposition of Conductive Poly(3,4-ethylenedioxythiophene) Thin Films on Patterned FeCl3 Formed by Microcontact Printing

  • Lee, Bo H.;Cho, Yeon H.;Shin, Hyun-Jung;Kim, Jin-Yeol;Lee, Jae-gab;Lee, Hai-won ;Sung, Myung M.
    • Bulletin of the Korean Chemical Society
    • /
    • v.27 no.10
    • /
    • pp.1633-1637
    • /
    • 2006
  • We demonstrate a selective vapor-phase deposition of conductive poly(3,4-ethylenedioxythiophene) (PEDOT) thin films on patterned $FeCl_3$. The PEDOT thin films were grown on various substrates by using the vapor-phase polymerization of ethylenedioxythiophene (EDOT) with $FeCl_3$ catalytic layers at 325 K. The selective deposition of the PEDOT thin films using vapor-phase polymerization was accomplished with patterned $FeCl_3$ layers as templates. Microcontact printing was done to prepare patterned $FeCl_3$ on polyethyleneterephthalate (PET) substrates. The selective vapor-phase deposition is based on the fact that the PEDOT thin films are selectively deposited only on the regions exposing $FeCl_3$ of the PET substrates, because the EDOT monomer can be polymerized only in the presence of oxidants, such as $FeCl_3$, Fe($CIO_4$), and iron(II) salts of organic acids/inorganic acids containing organic radicals.

Study on the Organic Gate Insulators Using VDP Method (VDP(Vapor Deposition Polymerization) 방법을 이용한 유기 게이트 절연막의 대한 연구)

  • Pyo, Sang-Woo;Shim, Jae-Hoon;Kim, Jung-Soo;Kim, Young-Kwan
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.07a
    • /
    • pp.185-190
    • /
    • 2003
  • In this paper, it was demonstrated that the organic thin film transistors were fabricated by the organic gate insulators with vapor deposition polymerization (VDP) processing. In order to form polyimide as a gate insulator, vapor deposition polymerization process was also introduced instead of spin-coating process, where polyimide film was co-deposited by high-vacuum thermal evaporation from 4,4'-oxydiphthalic anhydride (ODPA) and 4,4'-oxydianiline (ODA) and 2,2-bis(3,4-dicarboxyphenyl)hexafluoropropane dianhydride (6FDA) and ODA, and cured at $150^{\circ}C$ for 1hr. Electrical output characteristics in our organic thin film transistors using the staggered-inverted top-contact structure obtained to the saturated slop in the saturation region and the subthreshold non-linearity in the triode region. Field effect mobility, threshold voltage, and on-off current ratio in $0.45\;{\mu}m$ thick gate dielectric layer were about $0.17\;cm^2/Vs$, -7 V, and $10^6\;A/A$, respectively. Details on the explanation of compared to organic thin-film transistors (OTFTS) electrical characteristics of ODPA-ODA and 6FDA-ODA as gate insulators by fabricated thermal co-deposition method.

  • PDF

Electrical Effects in Organic Thin-Film Transistors Using Polymerized Gate Insulators by Vapor Deposition Polymerization (VDP)

  • Lee, Dong-Hyun;Pyo, Sang-Woo;Koo, Ja-Ryong;Kim, Jun-Ho;Shim, Jae-Hoon;Kim, Young-Kwan
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.661-664
    • /
    • 2004
  • In this paper, it was demonstrated that the organic thin film transistors with the organic gate insulators were fabricated by vapor deposition polymerization (VDP) processing. The configuration of OTFTs was a staggered-inverted top-contact structure and gate dielectric layer was deposited with 0.45 ${\mu}m$ thickness. In order to form polyimide as a gate insulator, VDP process was also introduced instead of spin-coating process. Polyimide film was respectively co-deposited with different materials. One was from a 4,4'-oxydiphthalic anhydride (ODPA) and 4, 4'-oxydianiline (ODA) and the other was from 2,2-bis(3,4-dicarboxyphenyl) hexafluoropropane dianhydride (6FDA) and ODA. And it was also cured at 150 $^{\circ}C$ for 1 hour followed by 200 $^{\circ}C$ for 1 hour. Electrical characteristics of the organic thin-film transistors were detailed comparisons between the ODPA-ODA and the 6FDA-ODA which were used as gate insulator.

  • PDF

Wettability control in C-SiOx film formed by plasma polymerization of HMDSO/$O_2$ mixture

  • Kim, Seong-Jin;Lee, Kwang-Ryeol;Moon, Myoung-Woon
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.328-328
    • /
    • 2011
  • Wetting phenomena have been heavily studied for industrial and academic researches especially tuning the wettability between hydrophilicity and hydrophobicity. Wicking through the surface texture is shown on superhydrophilic surface while rolling (or dewetting) on the patterns of superhydrophobic surface. These wetting phenomena are known to be affected by surface wettability determined with physical surface patterns as well as chemical composition of surface layer. In this research, we introduce a method to control the wettability of a thin C-SiOx film from hydrophobic to hydrophilic using a mixture gas of HMDSO/$O_2$ by plasma polymerization with rf-CVD (radio frequency-Chemical Vapor Deposition). Wettability was finely controlled by changing the ratio of HMDSO/$O_2$. Hydrophilicity increased as the ratio decreased, while hydrophobicity was enhanced by the ratio. Moreover, fine control from superhydrophilicity to superhydrophobicity was achieved by C-SiOx coating on the Si wafer with prepatterns of submicron-sized pillar array formed by $CF_4$ plasma etching.

  • PDF

Fabrication of Photoluminescent Dye Embedded PMMA Nanofiber and its Fluorescence Resonance Energy Transfer

  • Lee, Kyung-Jin;Oh, Joon-Hak;Kim, Young-Geun;Jang, Jyong-Sik
    • Proceedings of the Polymer Society of Korea Conference
    • /
    • 2006.10a
    • /
    • pp.314-314
    • /
    • 2006
  • The FRET property has been extensively studied from the theoretical view points to the practical applications. In case that the donor and acceptor are confined in nanodimension, the FRET effectively occurs, because of their distant dependent characteristic. However, there are no reports concerning FRET with one dimensional (1D) nanomaterial. We have successfully prepared the PMMA nanotubes using vapor deposition polymerization as the platform of FRET. The dye-PMMA composite nanofiber has also been produced without phase separation and any deterioration of properties of the dyes. The PMMA 1D nanocomposite doped two dyes with great spectral overlap between donor and acceptor displayed FRET property.

  • PDF

Electrical Characteristics of Organic TFTs Using ODPA-ODA and 6FDA-ODA Polyimide Gate Insulators

  • Lee, Min-Woo;Pyo, Sang-Woo;Jung, Lae-Young;Shim, Jae-Hoon;Sohn, Byoung-Chung;Kim, Young-Kwan
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2002.08a
    • /
    • pp.770-772
    • /
    • 2002
  • A new dry-processing method of organic gate dielectric film in field-effect transistors (FETs) was proposed. The method use vapor deposition polymerization (VDP) that is continuous and low temperature process. It has the advantages of shadow mask patterning and dry processing in flexible low-cost large area applications. Here, 80 nm-thick Al as a gate electrode was evaporated through shadow mask. Gate insulators used two different polyimides. The one material was 4,4'-oxydiphtahlic anhydride (ODPA) and 4,4'-oxydianiline (ODA). Another was 2,2-bis(3,4-dicarboxyphenyl) Hexafluoropropane Dianhydride (6FDA) and 4,4' -oxydianiline (ODA). These were co-deposited by high-vaccum thermal-evapora and cured at 150 $^{\circ}C$ for 1 hour, respectively. Pentacene as a semiconductor and 100 nm-thick Au as a source and drain electrode were evaporated through shadow mask.

  • PDF

An Organic Electrophosphorescent Device Driven by All-Organic Thin-Film Transistor using Polymeric Gate Insulator

  • Pyo, S.W.;Shim, J.H.;Kim, Y.K.
    • Journal of Information Display
    • /
    • v.4 no.2
    • /
    • pp.1-6
    • /
    • 2003
  • In this paper, we demonstrate that the organic electrophosphorescent device is driven by the organic thin film transistor with spin-coated photoacryl gate insulator. It was found that electrical output characteristics in our organic thin film transistors using the staggered-inverted top-contact structure showed the non-saturated slope in the saturation region and the sub-threshold nonlinearity in the triode region, where we obtained the maximum power luminance that was about 90 $cd/m^2$. Field effect mobility, threshold voltage, and on-off current ratio in 0.45 ${\mu}m$ thick gate dielectric layer were 0.17 $cm^2/Vs$, -7 V, and $10^6$ , respectively. In order to form polyimide as a gate insulator, vapor deposition polymerization process was also introduced instead of spin-coating process, where polyimide film was co-deposited by high-vacuum thermal evaporation from 4,4'-oxydiphthalic anhydride (ODPA) and 4,4'-oxydianiline (ODA) and cured at 150${\sqsubset}$for 1hr. It was also found that field effect mobility, threshold voltage, on-off current ratio, and sub-threshold slope with 0.45 ${\mu}m$ thick gate dielectric films were 0.134 $cm^2/Vs$, -7 V, and $10^6$ A/A, and 1 V/decade, respectively.

Study on the Characteristics of Organic TFT Using Organic Insulating Layer Efficiency (유기 절연층에 따른 유기 TFT 특성 연구)

  • Pyo, Sang-Woo;Lee, Min-Woo;Sohn, Byung-Chung;Kim, Young-Kwan
    • Journal of the Korean Applied Science and Technology
    • /
    • v.19 no.4
    • /
    • pp.335-338
    • /
    • 2002
  • A new process for polymeric gate insulator in field-effect transistors was proposed. Fourier transform infrared absorption spectra were measured in order to identify ODPA-ODA polyimide. Its breakdown field and electrical conductivity were measured. All-organic thin-film transistors with a stacked-inverted top-contact structure were fabricated to demonstrate that thermally evaporated polyimide films could be used as a gate insulator. As a result, the transistor performances with evaporated polyimide was similar with spin-coated polyimide. It seems that the mass-productive in-situ solution-free processes for all-organic thin-film transistors are possible by using the proposed method without vacuum breaking.