• Title/Summary/Keyword: Chiller System

Search Result 190, Processing Time 0.038 seconds

The Operation Characteristics and Cost Analysis of an Ice Thermal Storage System (빙축열 냉방시스템의 운전특성 및 비용 분석)

  • Ahn Young Hwan;Kang Byung Ha;Kim Suk Hyun;Lee Dae Young
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.17 no.2
    • /
    • pp.156-164
    • /
    • 2005
  • A comparative analysis of an ice storage system has been performed on the operation cost for the four control strategies, i.e., chiller priority and chiller downstream, chiller priority and chiller upstream, storage priority and chiller upstream, storage priority and chiller downstream. Main components of the ice storage system are an ice-on-coil storage tank and a screw compressor chiller. With the simulation program, the operation cost has been evaluated from the economics of an ice storage system. It is found that the operation cost of the ice storage system is strongly dependent on the control strategy, i.e., chiller priority or storage priority, but less affected by the arrangement method, i.e., chiller upstream or chiller downstream. In case of the maximum load day, the control strategy with chiller priority and chiller upstream is supposed to obtain the reduction of operation cost. However, it is found that the control strategy with storage priority and chiller downstream is the best economical operation for most summer seasons except the maximum load day.

The Suggestion of Reliability Improvement Method based on Failure Trend Analysis of Chiller (냉동기 고장경향분석을 통한 설비신뢰도향상 방안 제시)

  • Lee, Sang Dae;Yeom, Dong Un;Hyun, Jin Woo
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.64 no.4
    • /
    • pp.251-255
    • /
    • 2015
  • Chiller system plays an important role of maintaining room temperature constantly by supplying chilled water to Heating, Ventilating and Air Conditioning(HVAC)or area room cooler equipment during plant normal operation or accident condition. Chiller failures are one of the most frequently occurring equipment failures. If the types of chiller failures are analyzed and grouped thoroughly, it would be helpful to make chiller maintenance strategy at the plants. That would enhance equipment reliability of chiller in the end. In this paper, chiller failure data during three years were analyzed and categorized by specific failure code. In addition, the various proposals to improve equipment reliability of chiller were suggested such as Preventive Maintenance Optimization(PMO) strategy and performance monitoring reinforcement and so on.

Optimal Control Algorithm for the Dual Source Chiller Air Conditioning System (복합 열원 공조시스템의 최적 제어 알고리즘)

  • Han, Do-Young;Kim, Jin
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.16 no.9
    • /
    • pp.881-888
    • /
    • 2004
  • Control algorithms for a dual source chiller air conditioning system were developed. These are control algorithms for the supply air temperature control, the supply header chilled water temperature control, the chiller chilled water temperature control, and the cooling tower water temperature control. These algorithms were analyzed by using a dynamic simulation program. Simulation results showed the energy savings and the satisfactory controls of an absorption and centrifugal chiller air conditioning system. Therefore, control algorithms developed for this study may effectively be used for the improved controls of the dual source chiller air conditioning system.

Development of High Efficiency Cycle by Combining Double-Effect with Single-Effect Absorption Chiller Systems (이중 효용과 일중 효용을 복합한 다단 재생 고효율 흡수식 냉동 사이클 개발)

  • Yun, Sang Kook
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.29 no.7
    • /
    • pp.360-365
    • /
    • 2017
  • Recently, development efforts of triple-effect absorption chiller have been increased in order to improve the efficiency of double-effect absorption chiller. However, triple-effect absorption chiller has some disadvantages, including high corrosion characteristic of LiBr solution at high temperature of $200^{\circ}C$. Moreover, it is necessary to develop new components for operation under high pressure of 2 bars even though COP is increased to 1.6 or 1.7. The objective of this study was to introduce a new system by combining double effect absorption chiller with single effect absorption chiller with multi-generators using bypass flow of LiBr dilute solution to $3^{rd}$ generator to overcome the disadvantages of triple-effect chiller and improve energy efficiency. Results indicate that the new absorption cycle had a much higher efficiency than double-effect chiller system, showing significant improvement when bypass solution flow rate of 25% was applied to the $3^{rd}$ generator using the main dilute solution of the absorber. The COP of the new chiller system was found to be 1.438, which was 21.7% higher than that (1.18) of the present double-effect system. The COP was decreased when solution by-pass rate to the $3^{rd}$ generator was increased. In addition, lower cooling water temperature caused higher COP. Therefore, the multi-generator system with by-pass solution might be an excellent chiller alternative to triple-effect absorption chiller with higher efficiency.

Performance Analysis of Micro-turbine CHP System with Absorption Chiller (흡수식 칠러를 장착한 마이크로터빈 구동 열병합시스템의 성능 해석)

  • Yun, Rin;Han, Seung-Dong
    • Proceedings of the SAREK Conference
    • /
    • 2007.11a
    • /
    • pp.540-545
    • /
    • 2007
  • The performance of microturbine CHP system equipped with an absorption chiller was analyzed by modelling of a microturbine and an absorption chiller. The microturbine having recuperator was simulated by the Brayton cycle model. The mass flow rate and available heat energy of the exhaust gas from the microtubune were simulated, and this results were utilized as input values for the generator of the absorption chiller. The absorption chiller is a single-effect air cooled type having solution heat exchanger. When heat input to the generator increased, the heat transfer rate and UA of the heat exchangers of the absorption chiller proportionally increased. Besides, the COP of the absorption chiller increased with increase of the heat input to the generator under the sufficient size of the evaporator condition. When the capacity of the CHP system increased from 30 to 60 kW, the mass flow rate of the LiBr for the absorption chiller increased by two times, and UA values for evaporator and condenser were increased by 3.9 and 3.4 times, respectively, under the same COP condition.

  • PDF

A Study on the Efficiency Enhancement of the HT-PEMFC Having Fuel Processing System by Connecting Adsorption Chilling System (흡착식 냉방 시스템을 이용한 수소개질/연료전지 시스템의 효율향상)

  • NASEEM, MUJAHID;KIM, CHUL-MIN;LEE, SANGYONG
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.30 no.5
    • /
    • pp.411-417
    • /
    • 2019
  • An adsorption chiller is connected to the fuel processing/fuel cell system to increase the energy efficiency of the system. Since, the minimum temperature of $70^{\circ}C$ is needed to operate the adsorption chiller, HT-PEMFC is used as a heating source and $80^{\circ}C$ hot water in the water tank at the system is supplied to the chiller. Experimentally measured COP of the adsorption chiller was between 0.4-0.5 and the total calcuated efficiency of the connected system was between 60% and 70% comparing to 47% without adsorption chilling system.

Performance Analysis of Microturbine CHP System with Absorption Chiller (흡수식 칠러를 장착한 마이크로터빈 구동 열병합시스템의 성능 해석)

  • Yun, Rin;Han, Seung-Dong
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.20 no.7
    • /
    • pp.486-491
    • /
    • 2008
  • The performance of a microturbine CHP system equipped with an absorption chiller was analyzed by modeling it. The microturbine with recuperator was simulated with the Brayton cycle model. The mass flow rate and available heat energy of the exhaust gas from the microturbine were simulated. These results were utilized as input values for the generator of the absorption chiller. The absorption chiller is a single-effect air cooled type with a solution heat exchanger. The heat input into the generator was proportional to the heat transfer rate and the UA values of the heat exchangers of the absorption chiller. Furthermore, the COP of the absorption chiller increased with respect to an increase of the heat input into the generator, under the sufficient evaporator capacity condition. When the capacity of the CHP system increased from 30 to 60 kW, the mass flow rate of the LiBr for the absorption chiller doubled, and the UA values for evaporator and condenser increased by factors of x3.9 and x3.4, respectively, under the same COP condition.

An Evaluation of Chiller Control Strategy in Ice Storage System for Cost-Saving Operation (운전비 절감을 위한 빙축열시스템 냉동기 운전기법 평가)

  • Lee, Kyoung-Ho;Choi, Byoung-Youn;Lee, Sang-Ryoul
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.20 no.2
    • /
    • pp.97-105
    • /
    • 2008
  • This paper presents simulated and experimental test results of optimal control algorithm for an encapsulated ice thermal storage system with full capacity chiller operation. The algorithm finds an optimal combination of a chiller and/or a storage tank operation for the minimum total operation cost through a cycle of charging and discharging. Dynamic programming is used to find the optimal control schedule. The conventional control strategy of chiller-priority is the baseline case for comparing with the optimal control strategy through simulation and experimental test. Simulation shows that operating cost for the optimal control with chiller on-off operation is not so different from that with chiller part load capacity control. As a result from the experimental test, the optimal control operation according to the simulated operation schedule showed about 14 % of cost saving compared with the chiller-priority control.

Study of Temperature Dynamic Characteristics of Various Control Methods for MGO Chiller System (MGO Chiller 시스템의 제어 방식에 따른 온도 동특성 연구)

  • Cho, Hee-Joo;Kim, Sung-Hoon;Choi, Jungho
    • Journal of Ocean Engineering and Technology
    • /
    • v.33 no.2
    • /
    • pp.139-145
    • /
    • 2019
  • It is important that an MGO Chiller System, which is one of the sulfur oxide emission control technologies, is designed to meet the fuel temperature requirements, even with sudden engine load changes. Three different control algorithms (PI, Cascade, and MPC) were applied to an indirect MGO chiller system to compare and analyze the outlet temperature dynamic characteristics of the system through a case study. The results showed that the MPC control method had the best temperature following characteristics in the case study, and the temperature deviation range was reduced by approximately 5% compared to the PI control method.

Optimal Scheduling of Ice Storage System with Prediction of Cooling Loads (예측 냉방부하를 이용한 빙축열시스템의 최적 운전계획)

  • 이경호;최병윤;주용진;이상렬;한승호
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.12 no.11
    • /
    • pp.982-993
    • /
    • 2000
  • This paper describes an optimal control scheduling of an encapsulated ice storage system with a chiller of nominal chiller 34RT(103,200kcal/hr) and an ice storage tank of 170RT-hrs(514,080 kcal). The optimization technique used in the study is dynamic programing. The objective function is summed cost during a day including charge and discharge periods. Control strategies being used commercially are chiller priority and storage priority control. In chiller priority control, the chiller is allowed to run at full capacity during the day, subject to limitations of the building load, and the ice is only melted when and if the load exceeds the chillers full capacity. In contrast to chiller priority control, the aim in storage priority control is to melt as much as ice as possible during the day time period. The system simulation calculates the operation costs for the three control strategies in the condition of the same cooling load and the same ice storage system. The simulation period is a day, assuming that initially the tank is stored fully and the cooling load is perfectly predicted for the scheduling. Also Final state of the tank is to be charged fully.

  • PDF