• 제목/요약/키워드: Chlorine oxidation

Search Result 84, Processing Time 0.029 seconds

Chromaticity removal by chlorine and ozone oxidation in water treatment (상수처리에서 염소 및 오존산화를 이용한 색도제거)

  • Lee, Jeonghoon;Kim, Jinkeun
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.31 no.4
    • /
    • pp.273-279
    • /
    • 2017
  • Optimal processes to remove chromaticity at E water treatment plant(WTP) mainly caused by algae of E lake in Jeju island were investigated based on lab-tests of chlorine and ozone oxidation. 42.9% of chromaticity of filtered water was removed by chlorine oxidation under pH 7.0~8.0, dose of 1.0 mg/L with contact time of 30~60 min. On the other hand, chromaticity removal was 71.4% when post-ozone dose of 0.9~1.9 mg/L and pH 9.0, while it was increased to 86.7% under post-ozone dose of 3.1~7.3 mg/L and pH 9.0. However, there was no significant chromaticity removal efficiency increase when ozone doses were higher than 5.0 mg/L regardless of feeding point(i.e., pre-ozonation and post-ozonation) and pHs(i.e., 7.0 and 9.0.) under the experimental conditions. Based on the results, chlorine oxidation using existing chlorination facilities at the WTP is recommended for lower chromaticity while ozone oxidation is recommended for higher chromaticity by installing new ozone feeding facilities.

Disinfection & Removal of Phenol by Chlorine Dioxide (이산화염소에 의한 페놀제거 및 살균)

  • Jeong, Seung-Woo;Choi, Hee-Chul;Kang, Joon-Won;Kim, Jong-Bae;Choi, Seung-il
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.7 no.2
    • /
    • pp.24-33
    • /
    • 1993
  • The effects of chlorine dioxide on the oxidation of phenol and disinfection were studied in the various test water conditions. With the 0.3mg/l of chlorine dioxide dose, the spiked phenol(initial concentration: 0.1mg/l) was completely oxidized within 10 minute. The removal rate of phenol was much faster in distilled water than in ground water and filtered water. The applied dose of chlorine dioxide concentrations higher than 0.2mg/l was sufficiently enough for the complete oxidation of phenol. However, with 0.1mg/l of dose, chlorine dioxide can oxidize only 20% of the spiked phenol. The reactive substances present in test water may influence the chlorine dioxide demand in water. pH effect of oxidation rate was also investigated. Increasing the pH, the removal rate of phenol was found to be increased. The disinfection test of chlorine and chlorine dioxide were conducted and compared. The lethal effect for the both disinfectants are similarly powerful. The time for 99% inactivation of E. coli was obtained within 120 sec with the 0.2mg/l of each dose.

  • PDF

Nitrogen Removal by Electrochemical Oxidation Using the Tube Type Electrode (튜브형 전극을 이용한 전기화학적 산화에 의한 질소제거에 관한 연구)

  • Cho, Jae-Jun;Jeong, Jong-Sik;Lee, Jae-Bok
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.18 no.5
    • /
    • pp.580-587
    • /
    • 2004
  • The objective of this research is to investigate the electrochemical oxidation process for nitrogen removal in wastewater involving chloride ion and nitrogen compounds. The process experiment of electrochemical oxidation was conducted by using the stainless steel tube type reactor and the $Ti/IrO_2$ as anode. Free chlorine production and current efficiency variation for total nitrogen removal was compared depending on whether electrolyte is added, and the nitrogen type distribution under an operating condition. When chloride was added as electrolyte, it was found that production of free chlorine increased and the concentration of the chloride decreased as retention time passed. The concentration of chloride in influent decreased from 1,660 to 1,198 mg/L at the current density of $6.7A/dm^2$, while concentration of free chlorine increased to 132 mg/L. Current efficiency in removal of ammonium nitrogen was increased when chloride was dosed as electrolyte. It was observed that ammonium nitrogen was oxidized to nitrite and nitrate through electrochemical oxidation and that the concentration of total nitrogen in influent was reduced from 22.58 to 4.00 mg/L at the short retention time of 168 seconds through the electrochemical oxidation of nitrogen.

Effect of Electrochemical Treatment on the Chlorine Generation Efficiency of Ballast Water in the Brackish Zone (기수지역 선박평형수의 염소 생성 효율에 미치는 전기화학 처리의 영향)

  • Choi, Yong-Sun;Lee, You-Kee
    • Korean Journal of Materials Research
    • /
    • v.29 no.1
    • /
    • pp.16-22
    • /
    • 2019
  • Indirect oxidation using chlorine species oxidizing agents is often effective in wastewater treatment using an electrochemical oxidation process. When chlorine ions are contained in the wastewater, oxidizing agents of various chlorine species are produced during electrolysis. In a ballast water management system, it is also used to treat ballast water by electrolyzing seawater to produce a chlorine species oxidizer. However, ballast water in the brackish zone and some wastewater has a low chlorine ion concentration. Therefore, it is necessary to study the chlorine generation current efficiency at various chlorine concentration conditions. In this study, the chlorine generating current efficiency of a boron-doped diamond(BDD) electrode and insoluble electrodes are compared with various chloride ion concentrations. The results of this study show that the current efficiency of the BDD electrode is better than that of the insoluble electrodes. The chlorine generation current efficiency is better in the order of BDD, MMO(mixed metal oxide), $Ti/RuO_2$, and $Ti/IrO_2$ electrodes. In particular, when the concentration of sodium chloride is 10 g/L or less, the current efficiency of the BDD electrode is excellent.

A Study on the NOx Reduction of Flue Gas Using Un-divided Electrolysis of Seawater (무격막식 해수 전기분해 방식을 통한 배연 탈질에 관한 연구)

  • Kim, Tae-Woo;Choi, Su-Jin;Kim, Jong-Hwa;Song, Ju-Yeong
    • Korean Chemical Engineering Research
    • /
    • v.50 no.5
    • /
    • pp.825-829
    • /
    • 2012
  • In this study, we investigated NO oxidation characteristic that depends on available chlorine concentration and temperature of seawater which is treated by un-divided electrolysis. Reactant gas passed through bubbling reactors which is filled with electrolyzed water and then NO concentration change was analyzed. In the closed-loop electrolysis system, concentration of available chlorine increased with electrolysis time. The higher oxidation rate of NO to $NO_2$ was obtained with the higher concentration of available chlorine. Oxidation of NO was fast when temperature of electrolyzed water was high, in the case of same concentration of available chlorine.

Removal of microorganic pollutants based on reaction model of UV/chlorine process (자외선/염소 반응해석 모델에 의한 미량유기물질 제거에 관한 연구)

  • Hwang, Tae-Mun;Nam, Sookhyun;Kwon, Minhwan;Kang, Joon-Wun
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.31 no.1
    • /
    • pp.73-81
    • /
    • 2017
  • The UV/chlorine process is a UV-based advanced oxidation process for removing various organic pollutants in water. The process is becoming increasingly popular because of its effectiveness in practice. It is important to the safe and efficient operation of a UV/chlorine process that the optimal operating conditions for both target removal objective and saving energy are determined. Treatment efficiency of target compounds in UV/chlorine process was mainly affected by pH and scavenging factor. In this study, kinetic based mathematical model considering water characteristics and electrical energy dose calculations model was developed to predict of treatment efficiency and optimal operating conditions. The model equation was validated for the UV/chlorine process at the laboratory scale and in pilot tests at water treatment plants.

A Study on the NOx Reduction of Flue Gas Using Seawater Electrolysis (해수 전기분해를 적용한 배연 탈질 기술에 관한 연구)

  • Kim, Tae-Woo;Kim, Jong-Hwa;Song, Ju-Yeong
    • Journal of the Korean Applied Science and Technology
    • /
    • v.29 no.4
    • /
    • pp.570-576
    • /
    • 2012
  • In this study, we investigated the characteristics of NO oxidation using un-divided electrolyzed seawater as oxidant. The concentration of available chlorine and the temperature of electrolyzed seawater are increased with electrolysis time in the closed-loop constant current electrolysis system. While NO gas flow through bubbling reactor which is filled with electrolyzed seawater, the oxidation rate of NO to $NO_2$ is increased with the concentration of available chlorine and the temperature. $NO_2$, generated by oxidation reaction, is dissolved in electrolyzed seawater and existed as $HNO_3{^-}$ ion.

Effect of Experimental Factors on Manganese Removal in Manganese Sand Filtration (망간모래여과공정에서 망간제거에 미치는 영향인자)

  • Kim, Berm-Soo;Yoon, Jaekyung;Ann, Hyo-Won;Kim, Chung-Hwan
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.20 no.1
    • /
    • pp.86-93
    • /
    • 2006
  • In the drinking water treatment, the aesthetic and color problem are caused by the manganese which is occurring and present in the surface, lake and ground water. The most common treatment processes for removing manganese are known for oxidation followed by filtration. In this study, the manganese sand process was used for removing manganese with river bank filtrate as a source. In the manganese sand process, the residual chlorine and pH are important factors on the continuous manganese oxidation. In addition, space velocity (SV) and alum dosage are play a role of manganese removal. Even though manganese removal increased with increasing chlorine concentration, the control of residual chlorine is actually difficult in this process As the results of tests, the residual chlorine concentration as well as manganese removal were effectively achieved at pH 7.5. The optimum attached manganese concentration on manganese sand was confirmed to 0.3mg/L by the experimental result of a typical sand converting to manganese sand.

Combined Effects of Metal Coagulants and Monochloramine on Polyamide RO Membrane Performance (금속성 응집제와 모노클로라민의 상호작용이 Polyamide계 RO막 성능에 미치는 영향)

  • Kim, Kyunghwa;Hong, Seungkwan;Park, Chanhyuk;Yoon, Seongro;Hong, Seongpyuo;Lee, Jonghwa
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.20 no.4
    • /
    • pp.637-643
    • /
    • 2006
  • The bench-scale chlorine exposure study was performed to investigate the effect of pretreatment by free chlorine and monochloramine ($NH_2Cl$) on the performance of RO membranes made of polyamide (PA). Feed monochloramination at 2mg/L did not cause significant productivity loss compared to free chlorine. However, metal coagulants reacted with monochloramine, the PA membrane suffered from a gradual loss of membrane integrity by chlorine oxidation, which was characterized as a decrease in salt rejection. Especially, RO membranes exposed to alum coagulants with monochloramine revealed the salt rejection lower than those exposed to iron coagulants. XPS membrane surface analysis demonstrated that the chlorine uptake on the membrane surface increased and carbon peaks were shifted significantly when exposed to alum coagulants with monochloramine.