• Title/Summary/Keyword: Chromosomal radiosensitivity

Search Result 2, Processing Time 0.018 seconds

Radiation Induced $G_2$ Chromatid Break and Repair Kinetics in Human Lymphoblastoid Cells (인체 임파양세포에서 $G_2$기 염색체의 방사선 감수성)

  • Seong, Jin-Sil
    • Radiation Oncology Journal
    • /
    • v.11 no.2
    • /
    • pp.193-203
    • /
    • 1993
  • In understanding radiosensitivity a new concept of inherent radiosensitivity based on individuality and heterogeneity within a population has recently been explored. There has been some discussion of possible mechanism underlying differences in radiosensitivity between cells. Ataxia telangiectasia (AT), a rare autosomal recessive genetic disorder, is characterized by hypersensitivity to ionizing radiation and other DNA damaging agents at the cellular level. There have been a lot of efforts to describe the cause of this hypersensitivity to radiation. At the cellular level, chromosome repair kinetics study would be an appropriate approach. The purpose of this study was to better understand radiosensitivity En an approach to investigate kinetics of induction and repair of $G_2$ chromatic bleaks using normal, AT heterozygous (ATH), and AT homozygous lymphoblastoid cell lines. In an attempt to estimate initial damage, $9-{\beta}-D-arabinosyl-2-fluoroadenine,$ an inhibitor of DNA synthesis and repair, was used in this study. It was found from this study that radiation induces higher chromatid breaks in AT than in normal and ATH cells. There was no significant differences of initial chromatid breaks between normal and ATH cells. Repair kinetics was the same for all. So the higher level of breaks in AT $G_2$ cells is thought to be a reflection of the increased initial damage. The amount of initial damage correlated well with survival fraction at 2 Gy of cell survival curve following radiation. Therefore, the difference of radiosensitivity in terms of $G_2$ chromosomal sensitivity is thought to result from the difference of initial damage.

  • PDF

Adaptive Response to ionizing Radiation Induced by Low Doses of Gamma Rays in Human Lymphoblastoid Cell Lines (인체임파양세포에서 저선량의 감마선에 의해서 유도되는 적응 반응)

  • Seong, Jin-Sil;Suh, Chang-Ok;Kim, Gwi-Eon
    • Radiation Oncology Journal
    • /
    • v.12 no.1
    • /
    • pp.1-8
    • /
    • 1994
  • When cells are exposed to low doses of a mutagenic or clastogenic agents. they often become less sensitive to the effects of a higher dose administered subsequently. Such adaptive responses were first described in Escherichia coli and mammalian cells to low doses of an alkylating agent. Since most of the studies have been carried out with human lymphocytes, it is urgently necessary to study this effect in different cellular systems. Its relation with inherent cellular radiosensitivity and underlying mechanism also remain to be answered. In this study, adaptive response by 1 cGy of gamma rays was investigated in three human lymphoblastoid cell lines which were derived from ataxia telangiectasia homozygote, ataxia telangiectasia heterozygote, and normal individual. Experiments were carried out by delivering 1 cGy followed by 50 cGy of gamma radiation and chromatid breaks were scored as an endpoint. The results indicate that prior exposure to 1 cGy of gamma rays reduces the number of chromatid breaks induced by subsequent higher dose (50 cGy), The expression of this adaptive response was similar among three cell lines despite of their different radiosensitivity. When 3-aminobenzamide, an inhibitor of poly (ADP-ribose) polymerase, was added after 50 cGy, adaptive responses were abolished in all the tested cell lines. Therefore it is suggested that the adaptive response can be observed in human lymphoblastoid cell lines, which was first documented through this study. The expression of adaptive response was similar among the cell lines regardless of their radiosensitivity. The elimination of the adaptive response by 3-aminobenzamide is consistent with the proposal that this adaptive response is the result of the induction of a certain chromosomal repair mechanism.

  • PDF