• Title/Summary/Keyword: Circular Hole Notch

Search Result 11, Processing Time 0.022 seconds

Variation of Notch Shape on the Delamination Zone Behavior in Al/AFRP Laminates (노치형태 변화에 따른 Al/AFRP 적층재의 층간분리거동)

  • Song, Sam-Hong;Kim, Cheol-Woong
    • Proceedings of the KSME Conference
    • /
    • 2001.11a
    • /
    • pp.278-285
    • /
    • 2001
  • Aluminum/Aramid Fiber Reinforced Plastic(Al/AFRP) laminates are applied to the fuselage-wing intersection. The main objective of this study was to evaluate the delamination zone behavior of Al/AFRP with a saw-cut and circular hole using average stress criterion and the effect of notch geometry. Mechanical tests were carried out to determine the cyclic-bending moment and delamination zone observed ultrasonic C-scan pictures. In case of Al/AFRP containing saw-cut specimen, the shape and size of the delamination zone formed along the fatigue crack. However, in case of Al/AFRP containing circular hole specimen, the shape and size of delamination zone formed two types. first type, delamination zone formed along the fatigue crack. Second type, not observed fatigue crack. Therefore, delamination zone was formed dependently of the circular hole shape.

  • PDF

The Effect of Notch on Bending Fatigue Strength of Structural Steel (구조용 강의 굽힘 피로강도에 미치는 Notch의 영향)

  • 박노석
    • Journal of Biosystems Engineering
    • /
    • v.1 no.1
    • /
    • pp.64-72
    • /
    • 1976
  • This experimental work was carried out to investigate the fatigue bending strength on various shapes and sizes of notches of the domestically manufactured steel plate. The notch types tested were a circular hole, U-and V-notches. The S-N diagram for different notch shapes were discussed in relation to plan bending strength and stress concentration factor of notches .The results of the experiments are summarized as follows : (1) The difference between stress concentration factor and notch factor was greater as the radium of notch root became smaller, and these values approached to an identical value as the radium of notch root increased. (2) It was shown that the plane bending fatigue limit of bar without notch for the hotrolled steel having the tensile strength of 33.1kg/$mm^2$was 17.0kg/$mm^2$. (3) U-and V-notch had a greater effect of stress concentration factor on the endurance limit, but O-hole showed the same effect only for $\o\pm2mm$. (4) For the same radius of notch root, U-notch showed a lower value of fatigue limit compared to V-notch and O-hole.

  • PDF

The Effect of Defect Location Near a Circular Hole Notch on the Relationship Between Crack Growth Rate (da/dN) and Stress Intensity Factor Range (δK) - Comparative Studies of Fatigue Behavior in the Case of Monolithic Al Alloy vs. Al/GFRP Laminate - (원공노치 인근에 발생한 결함의 위치변화가 균열성장률(da/dN) 및 응력확대계수범위(δK)의 관계에 미치는 영향 - 단일재 알루미늄과 Al/GFRP 적층재의 피로거동 비교 -)

  • Kim, Cheol-Woong;Ko, Young-Ho;Lee, Gun-Bok
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.31 no.3 s.258
    • /
    • pp.344-354
    • /
    • 2007
  • The objective of this study is to investigate the effect of arbitrarily located defect around the circular hole in the aircraft structural material such as Al/GFRP laminates and monolithic Al alloy sheet under cyclic bending moment. The fatigue behavior of these materials may be different due to the defect location. Material flaws in the from of pre-existing defects can severely affect the fatigue crack initiation and propagation behavior. The aim of this study is to evaluate effects of relative location of defects around the circular hole in monolithic Al alloy and Al/GFRP laminates under cyclic bending moment. The fatigue behavior i.e., the stress concentration factor($K_t$), the crack initiation life($N_i$), the relationship between crack length(a) and cycles(N), the relationship between crack growth rate(da/dN) and stress intensity factor range(${\Dalta}K$) near a circular hole are considered. Especially, the defects location at ${\theta}_1=0^{\circ}\;and\;{\theta}_2=30^{\circ}$ was strongly effective in stress concentration factor($K_t$) and crack initiation life($N_i$). The test results indicated the features of different fatigue crack propagation behavior and the different growing delamination shape according to each location of defect around the circular hole in Al/GFRP laminates.

The Study on Notch Strength Characteristics with Circular Hole Notch in A17075/CFRP Layered Composites (원공노치를 갖는 A17075/CFRP 적층 복합재의 노치강도 특성에 관한 연구)

  • 이제헌;김영환;박준수;윤한기
    • Composites Research
    • /
    • v.13 no.3
    • /
    • pp.58-66
    • /
    • 2000
  • CARALL(Carbon fiber reinforced aluminum laminates) was fabricated with CFRP prepreg and A17075, using a autoclave. The mechanical properties of three samples i.e. A17075, CFRP and CARALL were also investigated as a function of size in circular holes. Theoretical approach into analysing mechanical behaviors near the circular hole notch was carried out to compare with experimental data, furthermore. By the adhesive bonding of A17075 to CFRP, abrupt strength reduction was prevented. From the consideration of modified point stress failure criterion, predicted results was well consistent with the experimental one.

  • PDF

The Fatigue Strength and the Fatigue Life Prediction in Plain Woven Glass/Epoxy Composite Plates (Glass/Epoxy 복합재료의 피로강도평가 및 피로수명예측)

  • 김정규;김도식
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.10
    • /
    • pp.2475-2482
    • /
    • 1993
  • The effects of the hole size(2R) and the specimen width(W) on the fatigue strength and the fatigue life in plain woven glass/epoxy composite plates are experimentally investigated under constant amplitude tensile fatigue loading. It is shown in this study that the notch sensitivity under fatigue loading is lower than that under static loading. It can be explained by the fact that the stress concentration is relaxed by the damage developed at the boundary of circular hole. To predict the fatigue strength at a specific cycle, the modified point stress criterion represented as a function of the geometry of the specimen(2R and W) is applied. It is found that the model used in the prediction of the notched tensile strength predicts the fatigue strength with reasonable accuracy. A model for predicting the fatigue life in the notched specimen, based on the S-$N_f$, curve in the smooth specimen, is suggested.

Notched Strength and Fracture Criterion of Glass/Epoxy Plain Woven Composites Containing Circular Holes (원공을 가진 Glass/Epoxy 복합재료의 노치강도 및 파괴조건)

  • 김정규;김도식
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.7
    • /
    • pp.1285-1293
    • /
    • 1992
  • The fracture behavior of glass/epoxy plain woven composite plates containing circular holes is experimentally investigated to examine the effects of hole size and specimen width on notched tensile strength. It is shown in this paper that the characteristic length according to the point stress criterion depends on the hole size and specimen width. For predicting the notched tensile strength, a modified failure criterion is developed. An excellent agreement is found between the experimental results and the analytical prediction of modified failure criterion. The notched strength and the characteristic length have an increase and decrease relations. When the unstable fracture occured, the critical crack length equivalent for the damage zone size at the edge of hole is about twice the characteristic length. The critical energy release rate G$_{c}$ is independent of hole size(0.03 .leq. 2R/W .leq. 0.5) under the same specimen width. However G$_{c}$ increases with an increase in specimen width which can be explained by stress relaxation due to the notch insensitivity.ity.

Detection of the Defect on the Metal Surface Using the Modulated Microwave (변조 고주파에 의한 금속표면 결함 검출)

  • Joo, G.T.;Jung, S.H.;Song, K.Y.;Kim, J.O.
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.19 no.3
    • /
    • pp.173-179
    • /
    • 1999
  • The defects on the metal surface. such as the ended circular pressed hole. the penetrated circular drilled hole, and the linear hollow lanes have been investigated by means of the microwave. In this experiment, frequency was set at 9.2GHz with 3kHz modulation, and the methods of reflection, transmission, fixed carrier frequency, and mod-demodulated technique have been used for investigating defects. The magnitudes of the microwave signals have been changed at the ended circular pressed hole and the penetrated circular drilled hole. The defect sizes that were estimated from the reflected microwave signals had the dimensions enlarged by twice the original size of the penetrated circular drilled hole and 2.5 times the original size of the ended circular pressed hole. The magnitudes of the reflected microwave signals from the linear hollow lane have increased with expansion of the width of the notch. In the linear hollow lane with the depth of 2.4mm, the reflected microwave signals versus the defect widths had a maximum value at the defect width of 50mm, and in the linear hollow lanes with the depths of 1.2mm and 0.45mm, the reflected microwave signals versus the defects widths had the maximum values each at the defect depths of 55mm.

  • PDF

The Effect of Hole Size on the Failure Strength and Fracture Toughness in Polymer Matrix Composite Plates (Plastic기 복합재료의 파손강도 및 파괴인성에 미치는 원공크기의 영향)

  • Kim, Jeong-Gyu;Kim, Do-Sik
    • Korean Journal of Materials Research
    • /
    • v.3 no.2
    • /
    • pp.197-204
    • /
    • 1993
  • Abstract The effects of the hole size and the specimen width on the fracture behavior of several fabric composite plates are experimentally investigated in tension. Tests are performed on plain woven glass/ epoxy, plain woven carbon/epoxy and satin woven glass/polyester specimens with a circular hole. It is shown in this paper that the characteristic length according to the point stress criterion depends on the hole size and the specimen width. An excellent agreement is found between the experimental results and the analytical predictions of the modified failure criterion. The notched strength increase with an increase in the damage ratio, which is explained by a stress relaxation due to the formation of damage zone. When the unstable fracture occurred, the critical crack length equivalent for the damage zone is about twice the characteristic length. The critical energy release rate $G_c$ is independent of hole size for the same specimen width. The variation of $G_c$ according to the material system, fiber volume fraction and specimen width relates to the notch sensitivity factor. $G_c$ increases with a decrease in the notch sensitivity factor, which can be explained by a stress relaxation due to the increase of damage zone.

  • PDF

Inherent Damage Zone Model for fatigue Strength Evaluation of Cracks and Notches (영역피해모델에 의한 균열 및 노치의 피로강도평가)

  • Kim Won-Beom;Paik Jeom-Kee;Fujimoto Yukio
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.43 no.4 s.148
    • /
    • pp.494-503
    • /
    • 2006
  • Inherent damage zone model is presented to explain the fatigue properties near the fatigue limit and the crack growth threshold consistently Inherent damage zone model assumes that the stress at a point which is located at a small distance, $r_0$, an inherent length of the material that represents the size of effective damage zone, from the crack initiation position governs the fatigue characteristics regardless of the geometric configuration of the specimen; smooth specimen, notched specimen or cracked specimens with short and long crack length. A special feature of the paper is using the exact stress distributions of notched and cracked specimens at the strength evaluations. Analytical elastic solutions by Neuber and Westergaard are employed for this purpose Relationship between fatigue limit of smooth specimen and threshold stress of cracked specimen, occurrence condition of non-propagating crack at the root of elliptic notch and circular hole and relationship between stress concentration factor and fatigue notch factor are discussed quantitatively based on the proposed model.

Strength Prediction of Bolted Woven Composite Joint Using Characteristic Length (특성 길이를 이용한 평직 복합재 볼트 체결부의 강도 예측)

  • Park Seung-Bum;Byun, Joon-Hyung;Ahn, Kook-Chan
    • Journal of the Korean Society of Safety
    • /
    • v.18 no.4
    • /
    • pp.8-15
    • /
    • 2003
  • A study on predicting the joint strength of mechanically fastened woven glass/epoxy composite has been performed. An experimental and numerical study were carried out to determine the characteristic length and joint strength of composite joint. The characteristic lengths for tension and compression were determined from the tensile and compressive test with a hole respectively. The characteristic lengths were evaluated by applying the point stress failure criterion to a specimen containing a hole at the center subjected to tensile loading and a specimen containing a half circular notch at the center subjected to compressive load. The joint strength was evaluated by the Tsai-Wu and Yamada-Sun failure criterion on the characteristic curve. The predicted results of the joint strength were compared with experimental results.