• 제목/요약/키워드: Circular Pin Fin

검색결과 10건 처리시간 0.021초

원형 pin fin과 반원형 pin fin 사이의 성능 비교 (Comparison of Performance Between a Circular Pin Fin and a Half Circular Pin Fin)

  • 강형석
    • 산업기술연구
    • /
    • 제36권
    • /
    • pp.17-22
    • /
    • 2016
  • A circular pin fin (CPF) and a half circular pin fin (HCPF) are by using the one-dimensional analytic method. For these two fins, 90% of the maximum heat loss, Corresponding fin length for 90% of the maximum heat loss, fin effectiveness and fin efficiency are compared as functions of convection characteristic number and fin radius. Also, the ratio of heat loss from the HCPF to that from CPF listed with variation of fin length when the fin volumes are the same. One of the results shows that the efficiency of a CPF is larger than that of a HCPF while the effectiveness of a CPF is smaller than that of a HCPF when convection characteristic number, fin length and fin radius are the same.

  • PDF

짧은 못형핀의 형상 변화에 따른 열전달 및 마찰손실 특성 (Heat transfer and friction loss characteristics of shaped short pin-fin arrays)

  • 조형희
    • 설비공학논문집
    • /
    • 제9권3호
    • /
    • pp.259-267
    • /
    • 1997
  • Average heat transfer coefficients and friction coefficients have been measured from staggered short pin-fin arrays to investigate the effect of fin shapes. Flow entering into the test section is a fully developed duct flow and the Reynolds number ranges from 5,000 to 25,000 based on fin diameter and average approaching velocity. The fin has three different shapes; uniform-diameter circular fin, two stepped-diameter circular fins. Average heat transfer rates change slightly with the fin shapes. However, friction loss(pressure loss) for the stepped-diameter fins is significantly less than that for the uniform-diameter fin. This results indicate that the stepped-diameter fin arrays in duct flow enhance heat transfer rates largely based on unit pumping power.

  • PDF

초기 횡방향 유동이 존재하는 충돌제트/유출냉각에서 원형핀이 설치된 유출면에서의 열/물질전달 특성 (Heat/Mass Transfer on Effusion Plate with Circular Pin Fins for Impingement/Effusion Cooling System with Intial Crossflow)

  • 홍성국;이동호;조형희
    • 대한기계학회논문집B
    • /
    • 제29권7호
    • /
    • pp.828-836
    • /
    • 2005
  • Impingement/effusion cooling technique is used for combustor liner or turbine parts cooling in gas turbine engine. In the impingement/effusion cooling system, the crossflow generated in the cooling channel induces an adverse effect on the cooling performance, which consequently affects the durability of the cooling system. In the present study, to reduce the adverse effect of the crossflow and improve the cooling performance, circular pin fins are installed in impingement/effusion cooling system and the heat transfer characteristics are investigated. The pin fins are installed between two perforated plates and the crossflow passes between these two plates. A blowing ratio is changed from 0.5 to 1.5 for the fixed jet Reynolds number of 10,000 and five circular pin fin arrangements are considered in this study. The local heat/mass transfer coefficients on the effusion plate are measured using a naphthalene sublimation method. The results show that local distributions of heat/mass transfer coefficient are changed due to the installation of pin fins. Due to the generation of vortex and wake by the pin fin, locally low heat/mass transfer regions are reduced. Moreover, the pin fin prevents the wall jet from being swept away, resulting in the increase of heat/mass transfer. When the pin fin is installed in front of the impinging let, the blockage effect on the crossflow enhances the heat/mass transfer. However, the pin fin installed just behind the impinging jet blocks up the wall jet, decreasing the heat/mass transfer. As the blowing ratio increases, the pin fins lead to the higher Sh value compared to the case without pin fins, inducing $16\%{\~}22\%$ enhancement of overall Sh value at high blowing ratio of M=1.5.

Pin fin의 다른 두 핀 끝 경계조건 사이의 온도분포 비교 (Comparison of Temperature Distribution Between Two Different Fin Tip Boundary Conditions for a Pin Fin)

  • 강형석
    • 산업기술연구
    • /
    • 제31권A호
    • /
    • pp.21-25
    • /
    • 2011
  • A comparison of temperature distributions along the fin length coordinate between two different fin tip boundary conditions for a circular pin fin is made by using the one-dimensional analytic method. One tip boundary condition is the actual fin tip boundary condition and fin tip temperature is arbitrarily given for another fin tip boundary condition. The value of the fin base temperature is depend on the fin base thickness and fin radius. One of the results shows that the temperature distribution along the fin length coordinate for the actual fin tip boundary condition and that for the arbitrarily given fin tip temperature are the same if the arbitrarily given fin tip temperature and the fin tip temperature for the actual fin tip boundary condition are the same.

  • PDF

후퇴익형 형상의 와류발생기가 있는 핀휜 유동의 전열 및 유동 특성 분석에 관한 수치적 연구 (Numerical Study on Heat Transfer and Flow Characteristics of Pin Fin with Swept Airfoil Shape Vortex Generator)

  • 이창형;오영택;배지환;이득호;김귀순
    • 한국추진공학회지
    • /
    • 제23권4호
    • /
    • pp.28-34
    • /
    • 2019
  • 본 연구에서는 터빈 냉각에 널리 사용되는 핀-휜 배열에 대한 연구를 진행하였다. 본 연구에서 원형 튜브 전방에 익형 와류발생기가 위치하며, 익형 단면 형상은 NACA-9410을 사용하였다. 본 논문에서는 와류 발생기가 있는 핀-휜 배열 유동의 전열 성능과 유동 특성을 수직인 방향으로 변화시키며 기존의 핀-휜 유동과 비교하였다. 레이놀즈수 영역은 6000, 10000 그리고 15000 세 가지를 계산하였다. 전산 해석은 상용 프로그램인 ANSYS v18.0 CFX, 난류 모델은 $k-{\omega}$ SST를 사용하였다. 결과적으로 전열 성능은 최대 5.8% 증가하였고 압력 손실은 1% 미만으로 증가하였다.

단을 가진 원형 핀휜이 부착된 냉각유로의 형상 최적 설계 (SHAPE OPTIMIZATION OF INTERNAL COOLING CHANNEL WITH STEPPED CIRCULAR PIN-FINS)

  • 문미애;김광용
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2008년도 학술대회
    • /
    • pp.229-232
    • /
    • 2008
  • This study presents a numerical procedure to optimize the shape of stepped circular pin-fins to enhance turbulent heat transfer. The KRG method is used as an optimization technique with Reynolds-averaged Navier-Stokes analysis of fluid flow and heat transfer with shear stress transport turbulent model. The objective function is defined as a linear combination of heat transfer and friction loss related terms with a weighting factor. Ten training points are obtained by Latin Hypercube Sampling for two design variables. Optimum shape has been successfully obtained with the increased objective function.

  • PDF

단을 가진 원형 핀휜이 부착된 냉각유로의 형상 최적 설계 (SHAPE OPTIMIZATION OF INTERNAL COOLING CHANNEL WITH STEPPED CIRCULAR PIN-FINS)

  • 문미애;김광용
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2008년 추계학술대회논문집
    • /
    • pp.229-232
    • /
    • 2008
  • This study presents a numerical procedure to optimize the shape of stepped circular pin-fins to enhance turbulent heat transfer. The KRG method is used as an optimization technique with Reynolds-averaged Navier-Stokes analysis of fluid flow and heat transfer with shear stress transport turbulent model. The objective function is defined as a linear combination of heat transfer and friction loss related terms with a weighting factor. Ten training points are obtained by Latin Hypercube Sampling for two design variables. Optimum shape has been successfully obtained with the increased objective function.

  • PDF

외표면 형상이 원관의 응축열전달에 미치는 영향 (Experiments on the Condensation Heat Transfer Enhancement of Horizontal Circular Tube with Threaded Outside Surface)

  • 이진호;남임우
    • 대한설비공학회지:설비저널
    • /
    • 제17권3호
    • /
    • pp.230-237
    • /
    • 1988
  • An experiment was carried out to study the condensation heat transfer enhancement of horizontal circular cylinders with varying outside surface configurations. The refrigerant used is Freon-22 and the test condensing temperature is 34.1C. Pin-finned tube shows about 2.5-3.5 times higher overall heat transfer coefficient compared to that of smooth surface tube, thus has larger encomic benifit for condenser design. The condensation heat transfer coefficient was shown to increase as the fin-pitch of the pin-finned tube decreases for film Reynolds number larger than 100.

  • PDF

원형가이드 설치에 따른 충돌제트/유출냉각에서 열/물질전달 특성 (Heat/Mass Transfer for Impingement/Effusion Cooling System with Circular Guide)

  • 홍성국;조형희
    • 대한기계학회논문집B
    • /
    • 제30권12호
    • /
    • pp.1147-1154
    • /
    • 2006
  • An experimental investigation was conducted to enhance the heat/mass transfer for impingement/effusion cooling system when the initial crossflow was formed. For the improvement of heat transfer, the circular guide is installed on the injection hole. At the fixed jet Reynolds number of 10,000, the measurements were carried out for blowing ratios ranging from 0.5 to 1.5. The local heat/mass transfer coefficients on the effusion plate are measured using a naphthalene sublimation method. The result presents that the circular guide protects the injected jet from the initial crossflow, increasing the heat/mass transfer. The heat transfer of stagnation region is hardly changed regardless of the blowing ratio. The secondary peak is obviously formed by flow transition to turbulent flow. At high blowing ratio of 1.5, the circular guide produces $26{\sim}30%$ augmentation on the averaged heat/mass transfer while the case without circular guide leads to the low and non-uniform heat/mass transfer. With the increased heat/mass transfer, the installation of circular guide is accompanied by the increase of pressure loss in the channel. However, the pressure drop caused by the circular guide is lower than that for other cooling technique with the circular pin fin.

마이크로 채널 관에서의 응축 열전달 성능에 관한 연구 (A study on condensation heat transfer performance in microchannel tube)

  • 이정근
    • Design & Manufacturing
    • /
    • 제13권2호
    • /
    • pp.22-29
    • /
    • 2019
  • This study conducted a research as to condensation heat transfer by using three types of flat micro multi-channel tubes with different processing of micro-fin and number of channels inside the pipes and different sizes of appearances. In addition, identical studies were conducted by using smoothing circular tubes with 5mm external diameter to study heat transfer coefficient. The condensation heat transfer coefficient showed an increase as the vapor quality and mass flux increased. However, each tube shows little differences compared to 400kg/m2s or identical in case the mass flux are 200kg/m2s and 100kg/m2s. The major reason for these factors is increase-decrease of heat transfer area that the flux type of refrigerant is exposed to the coolant's vapor with the effect of channel aspect ratio or micro-fin. In addition, the heat transfer coefficient was unrelated to the heat flux, and shows a rise as the saturation temperature gets lower, an effect that occurs from enhanced density. The physical factor of heat transfer coefficient increased as the channel's aspect ratio decreased. Additionally, the micro pin at the multi-channel type tube is decided as a disadvantageous factor to condensation heat enhancement factor. That is, due to the effect of aspect ratio or micro-fin, the increase-decrease of heat transfer area that the flux type of a refrigerant is exposed to the vapor is an important factor.