• 제목/요약/키워드: Circular membrane

검색결과 137건 처리시간 0.024초

고막(鼓膜)의 탄성도(彈性度)와 파열장력(破裂張力)에 관(關)한 연구(硏究) (Studies on the Elasticity, Young Modulus, and Breaking Tension of the Tympanic Membrane in Dog)

  • 이영식
    • The Korean Journal of Physiology
    • /
    • 제2권1호
    • /
    • pp.39-45
    • /
    • 1968
  • Recently, in this department, pressure-displacement curve and breaking tension of dog and human tympanic membrane were studied using intact, fresh or dried tympanic membrane attached to external auditory meatus. However, physical property, proper elasticity-Young Modulus, of the tympanic membrane has not been clarified yet. Present study is attempted to further clarify proper Young Modulus of tympanic membrane, and to distinguish possible difference between layer of stratum radiatum and layer of stratum circulare of tympanic membrane in breaking tension and in Young Modulus. Tympanic membrane was excised from sacrificed dog, and preparation was made into the size of approximately 1 mm in width and 3 mm in length. In fresh or dried tympanic membrane, which was dried at $80^{\circ}C$ for 24 hrs., some preparations were made along the long axis parallel to the fibers of radial direction, and others were made along the long axis perpendicular to the radial fibers-circular direction. Breaking tension and displacement according to loading, were measured and Young Modulus was calculated in tympanic membrane preparations under the different experimental conditions. Results obtained are summarized as follows : 1. Young Modulus of fresh tympanic membrane in radial direction was $6.57{\times}10^8\;dyne/cm^2$, and that of fresh preparation in circular direction was $1.68{\times}10^8\;dyne/cm^2$. The Young Modulus of fresh tympanic membrane in radial direction resembles to that of silk and whale moustache. In dried tympanic membrane, Young Modulus of preparation of radial direction was $30.2{\times}10^8\;dyne/cm^2$ and that of preparation in circular direction was $25.0{\times}10^8\;dyne/cm^2$. 2. Breaking tension of fresh tympanic membrane was 44.9 gm/mm in radial preparation, and 7.9 gm/mm in circular preparation. In dried tympanic membrane, breaking tension was 46.7 gm/mm in preparation of radial direction, and 17.2 gm/mm in preparation of circular direction. 3. Much smaller breaking tension of the circular preparation-one fifth to the radial preparation-seemed to be responsible for the higher incidence of circular fiber breaking in tympanic membrane performation caused by trauma or sudden change in atmospheric pressure. 4. The correlation seemed to be very close between breaking tension and Young Modulus in tympanic membrane.

  • PDF

The Contractile and Electrical Responses of Guinea-pig's Gastric Smooth Muscle to Serotonin

  • Lee, Sang-Jin;Hwang, Sang-Ik;Kim, Ki-Whan
    • The Korean Journal of Physiology
    • /
    • 제25권2호
    • /
    • pp.133-146
    • /
    • 1991
  • In order to elucidate systematically the effects of serotonin on gastric motility of guinea-pig, the contractile and electrical responses to serotonin were recorded using four kinds of muscle strips prepared from antral circular, antral longitudinal, fundic circular, and fundic longitudinal muscles. Experiments were performed using various methods including isometric contraction recording, transmural electrical field stimulation, junction potential recording, intracellular microelectrode technique, and partition stimulation method. The results were as follows: 1) The effect of serotonin on spontaneous contractions was inhibitory in the circular muscle strips of the antrum and fundus, while it was excitatory in the longitudinal muscle strips of the antrum and fundus. Serotonin changed mainly phasic contractions of both the circular and longitudinal muscle strips in the antrum, while it changed mainly tonic contractions of both the circular and longitudinal muscle strips in the fundus. 2) On the contractions induced by transmural nerve stimulation, serotonin decreased the amplitude in the circular muscle strips of the antrum, but it increased them in the other three groups of muscle strips(antral longitudinal, fundic circular, and fundic longitudinal). 3) On the contractions induced by direct muscle stimulation, serotonin decreased the amplitude in the circular muscle strips of the antrum and fundus. 4) In the fundic circular muscle strips serotonin potentiated excitatory junction potentials (EJPs), and in the antral circular muscle strips it evoked EJPs after inhibitory junction potentials(IJPS). 5) In the antral circular muscle strips serotonin did not affect the slow wave even at the disappearance of spontaneous contractions. On the contrary it increased the amplitude of the slow wave, when the spike component was potentiated and the second component was inhibited. 6) In the antral circular muscle strips the membrane potential was slightly hyperpolarized, but the membrane resistance was not changed. From the above results following conclusions could be made. 1) Serotonin inhibits spontaneous contractions of the circular muscle layer and it increases those of the longitudinal one, irrespective of the gastric region. 2) In the guinea-pig stomach there exists a serotoninergic facilitatory neuromodulation system which exerts its effect on cholinergically mediated contraction. 3) The excitation-contraction decoupling was observed in the effect of serotonin.

  • PDF

위 평활근의 부위별 전압-장력 관계에 관한 연구 (Regional Differences in Voltage-tension Relationship of Gastric Smooth Muscles in Guinea-pig)

  • 김기환;이상진;서석효
    • The Korean Journal of Physiology
    • /
    • 제23권2호
    • /
    • pp.263-275
    • /
    • 1989
  • Mechanical contractions and electrical activities of the fundic longitudinal and antral circular muscle fibers were investigated in order to elucidate topical differences of gastric motility. K-induced contracture was produced by exposure of muscle strips to high K Tyrode solution. Membrane potential and mechanical contraction were simultaneously recorded by conventional glass microelectrode method and single sucrose-gap technique. All experiments were performed in tris-buffered Tyrode solution which was aerated with $100%\;O_2\;and\;kept\;35^{\circ}C$. The results obtained were as follows: 1) The resting membrane potential of circular muscle cells in the antral region was about 10 mV more negative than that in the fundic region. 2) The membrane potentials decreased almost linearly as the extracellular KCI concentration was increased both in antral circular muscle cells and in fundic longitudinal muscle cells. 3) The thresholdal K concentration of K-contracture was 15 mM (membrane potential, -48 mV) for the antral circular muscle strip and 20 mM for the fundic longitudinal muscle cells. 4) The ratio of membrane permeability coefficient for $Na^+\;and\;K^+,\;P_{Na}/P_K\;({\alpha})$ was 0.065 for antral circular muscle cells and was 0.108 for fundic longitudinal muscle cells. 5) K-contracture of antral and fundic smooth muscle strips showed the contracture composed of phasic and tonic components. The amplitude of the phasic component increased sigmoidally in a dose-dependent manner, whereas that of the tonic component was maximal at a concentration of 40 mM KCI and at the concentrations above or below 40 mM KCI the amplitude was reduced. 6) The inverse relationship between the amplitude of tonic component and extracellular KCI concentration in the range of 40 to 150 mM KCI was more prominent in the antral circular muscle strip than in the fundic longitudinal muscle strip, where the amplitude of the tonic component decreased less steeply and was maintained higher at the same high K concentrations. 7) The tonic component was totally dependent on the external $Ca^{2+}$ and completely abolished by verapamil, while tile phasic component was far less dependent on the external $Ca^{2+}$ and partially suppressed by verapamil. From the above results, the following conclusions could be made. 1) The phasic component of K-contracture is produced both by intracellular $Ca^{2+}$ mobilization and by $Ca^{2+}$-influx from outside, while the tonic component is generated and maintained by the $Ca^{2+}-influx$ through the potential-dependent $Ca^{2+}$ channel. 2) The mechanism of reducing the free $Ca^{2+}$ concentration in the myoplasm seems to be more developed in the antral circular muscle than in the fundic longitudinal muscle. 3) The lower resting membrane potential of the fundic longitudinal muscle cell reflects a relatively high $P_{Na}/P_K$ ratio of about 0.108.

  • PDF

Excitatory Influences of Noradrenaline on the Spontaneous Contractions and Electrical Activity of Antral Circular Muscle of the Guinea-pig Stomach

  • Lee, Taik-Jong;Kim, Jin-Hwan;Kim, Ki-Whan
    • The Korean Journal of Physiology
    • /
    • 제25권2호
    • /
    • pp.147-158
    • /
    • 1991
  • The effects of noradrenaline on the spontaneous contraction recorded from a strip of mucosa-free antral circular muscle were studied in the guinea-pig stomach, and the changes in slow waves and membrane resistance were analyzed in order to elucidate the mechanism for the excitatory response to noradrenaline. Electrical responses of circular muscle cells were recorded using glass microelectrodes filled with 3 M KCI. Electrotonic potentials were produced to estimate membrane resistance by the partition stimulating method. All experiments were performed in tris-buffered Tyrode solution which was aerated with 100% $O_2$ and kept at $35^{\circ}C$. The results obtained were as follows: 1) The spontaneous contractions were potentiated dose-dependently by the application of noradrenaline. 2) Through the experiments using adrenoceptor-blockers, the strong excitatory effect via $[\alpha}-adrenoceptors$ and the weak inhibitory efffect via ${\beta}-adrenoceptors$ were noted. 3) Noradrenaline produced hyperpolarization of membrane potential, and increases in the amplitude and the maximum rate of rise of slow waves. 4) In the presence of apamin, Ca-dependent K channel blocker, the characteristic hyperpolarization was not developed. However, the excitatory effect of noradrenaline on spontaneous contraction remained. 5) Membrane resistance was reduced during the hyperpolarized state by the application of noradrenaline, and the change of membrane resistance and the hyperpolarized state were completely abolished by apamin. From the above results, following conclusions could be made: Excitatory responses to noradrenaline result from the dominant ${\alpha}-excitatory$, and the weak ${\beta}-inhibitory$ action of noradrenaline. Hyperpolarization of membrane potential by noradrenaline is due to the activation of Ca-dependent K channel.

  • PDF

Free Vibration Analysis of Solid and Annular Circular Membranes with Continuously Varying Density Using The Differential Transformation Method

  • Shin, Young-Jae;Yun, Jong-Hak;Jaun, Su-Ju;You, Young-chan
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2003년도 추계학술대회논문집
    • /
    • pp.988-993
    • /
    • 2003
  • This paper presents the application of the technique of differential transformation of free vibration of membrane. Numerical calculations are carried out and compared with previously published results. The results obtained by the present method agree very well with those reported in the previous works. The present analysis shows the usefulness and validity of differential transformation in solving a solid and annular circular membranes problem of the responses of the free vibration.

  • PDF

몰수된 원형 유연막에 의한 파랑변형 (Wave Deformation by Submerged Flexible Circular Disk)

  • 조일형;김무현
    • 한국해안해양공학회지
    • /
    • 제12권3호
    • /
    • pp.116-129
    • /
    • 2000
  • 자유수면 아래 일정한 초기장력이 작용한 원형 박막이 수평으로 놓여있을 때 3차원 선형 유탄성 이론을 적용하여 파와 구조물의 상호작용문제를 고찰하였다. 속도포텐셜을 회절포텐셜과 방사포텐셜로 분리하여 각각의 경계치 문제를 푼다. 유체영열을 3개의 영역으로 나누어 각 영역에서 회절포텐셜과 방사포텐셜을 Bessel 함수의 전개식으로 표현하고 부족한 경계조건으로 생기는 미지수는 인접한 영역이 만나는 정합면에서 속도와 압력이 같다는 정합조건식을 적용하여 구해진다. 원형막의 크기와 잠긴 깊이 그리고 추기장력이 변함에 따라 원형 유연막 주위의 파의 형태가 달라짐을 볼 수 있었다. 즉, 적절히 설계된 몰수형 원형 유연막은 파 에너지를 집중시키는데 활용될 수 있다.

  • PDF

A singular nonlinear boundary value problem in the nonlinear circular membrane under normal pressure

  • Shin, Jun-Yong
    • 대한수학회지
    • /
    • 제32권4호
    • /
    • pp.761-773
    • /
    • 1995
  • The nonlinear boundary value problem $$ y" = f(x, y, y') = -\frac{x}{3}y' - \frac{y^2}{g(x)}, 0 < x < 1, $$ $$ (1.1) y'(0) = 0, and either (H) : y(1) = \lambda > 0 $$ $$ or (S) : y'(1) + (1 - \upsilon)y(1) = 0, 1 - \upsilon > 0, $$ $$g \in C[0, 1], k \leq g(x) \leq K on [0, 1] for some k, K > 0 $$ arises in the nonlinear circular membrane under normal pressure [2, 3]., 3].

  • PDF

Free vibration of circular and annular membranes with varying density by the method of discrete singular convolution

  • Ersoy, Hakan;Ozpolat, Lutfiye;Civalek, Omer
    • Structural Engineering and Mechanics
    • /
    • 제32권5호
    • /
    • pp.621-634
    • /
    • 2009
  • A numerical method is developed to investigate the effects of some geometric parameters and density variation on frequency characteristics of the circular and annular membranes with varying density. The discrete singular convolution method based on regularized Shannon's delta kernel is applied to obtain the frequency parameter. The obtained results have been compared with the analytical and numerical results of other researchers, which showed well agreement.

굽힘을 고려한 원형 및 정사각형컵 딥드로잉 공정의 탄소성 유한요소해석 (Elastic-Plastic Finite Element Analysis of Deep Drawings of Circular and Square Cups Considering Bending)

  • 심현보;양동열
    • 대한기계학회논문집
    • /
    • 제18권7호
    • /
    • pp.1738-1750
    • /
    • 1994
  • Both cylindrical cup drawing and square cup drawing are analyzed using membrane analysis as well as shell analysis by the elastic-plastic finite element method. An incremental formulation incorporating the effect of large deformation and normal anisotropy is used for the analysis of elastic-plastic non-steady deformation. The computed results are compared with the existing experimental results to show the validity of the analysis. Comparisons are made in the punch load and distribution of thickness strain between the membrane analysis and the shell analysis for both cylindrical and square cup drawing processes. In punch load, both analyses show very little difference and also show generally good agreement with the experiment. For the cylindrical cup deep drawing, the computed thickness strain of a membrane analysis, however, shows a wide difference with the experiment. In the shell analysis, the thickness strain shows good agrement with the experiment. For the square cup deep drawing, both membrane and shell analyses show a wide difference with experiment, this may be attributable to the ignorance of the shear deformation. Concludingly, it has been shown that the membrane approach shows a limitation for the deep drawing process in which the effect of bending is not negligible and more exact information on the thickness strain distribution is required.

Power series solution of circular membrane under uniformly distributed loads: investigation into Hencky transformation

  • Sun, Jun-Yi;Rong, Yang;He, Xiao-Ting;Gao, Xiao-Wei;Zheng, Zhou-Lian
    • Structural Engineering and Mechanics
    • /
    • 제45권5호
    • /
    • pp.631-641
    • /
    • 2013
  • In this paper, the problem of axisymmetric deformation of the circular membrane fixed at its perimeter under the action of uniformly-distributed loads was resolved by exactly using power series method, and the solution of the problem was presented. An investigation into the so-called Hencky transformation was carried out, based on the solution presented here. The results obtained here indicate that the well-known Hencky solution is, without doubt, correct, but in the published papers the statement about its derivation is incorrect, and the so-called Hencky transformation is invalid and hence may not be extended to use as a general mathematical method.