• Title/Summary/Keyword: Citrobacter sp.

Search Result 28, Processing Time 0.024 seconds

Growth Characteristics of Citrobacter sp. MB2, Azo Dyes Decolorizing Bacterium (아조염료 분해균 Citrobacter sp. MB2 생육특성)

  • Kwoen, Dae-Jun;Ji, Won-Dae;Kwon, O-Jun;Lee, Tae-Jong;Lee, Nan-Hee;Son, Dong-Hwa;Choi, Ung-Kyu
    • Applied Biological Chemistry
    • /
    • v.49 no.3
    • /
    • pp.165-169
    • /
    • 2006
  • A Citrobacter sp. MB 2, azo dyes decolorizing bacterium, was isolated from the wastewater and soil and identified as Citrobacter sp.. It was examined that optimum conditions for culture media were 0.5% of sucrose, 1.0% of yeast extract, 0.1% of $K_2HPO_4$, 0.1% of $NaHCO_3$ per distilled water. The best efficient condition of culture was obtained at pH 7.0, $30^{\circ}C$ and aerobic shaking culture. The number of Citrobacter sp. MB2 in optimum medium was increased more than 7 fold compared to basal medium and 50 fold compared to nutrient broth. This strain was exhibited strong resistance against metal salts and antibiotics (ampicillin and penicillin G).

Degradation oof Triphenylmrthane Dyes by Citobacter sp. (Citrobacter sp.에 의한 Triphenylmethane계 색소의 분해)

  • 민상기;조영배;전홍기
    • Journal of Life Science
    • /
    • v.5 no.1
    • /
    • pp.8-19
    • /
    • 1995
  • The Optimal condition for degradation of crystal violet and other triphenylmethane dyes by Citrobacter sp. SK-3 isolated from the activated sludge of dye manufacturing factory was investigated. The optimal culture medium for the degradation of triphenylmethane dye was composed of minimum inorganic salt medium supplemented with 0.5% galactose, 0.1% beef extract, with the initial pH of 8.0 to 9.0. Under this condition, Citrobacter sp. SK-3 degraded 200 ppm of crystal violet completely within 24 hours. Citrobactre sp. SK-3 also degraded efficiently malachite green, pararosaniline, brilliant green, methyl violet, basic fuchsin and methyl red. Analysis of the degradation products of crystal violet through this layer chromatography and high performance liquid chromatography indicated that the methyl groups bound to crystal violet backborn were gradually demethylated to pentamethyl-, tetramethyl- and trimethylpararosaniline.

  • PDF

Inhibition Effect of Ginseng Saponin on the Growth of Citrobacterer sp. Isolated from Contaminated Ginseng (오염된 인삼으로부터 분리된 Citrobacter sp.에 대한 인삼사포닌의 생육억제 효과)

  • Park, Chae-Kyu;Kwak, Yi-Seong;Hong, Soon-Gi;Lee, Hoon-Sang;Hwang, Mi-Sun;Rhee, Man-Hee;Won, Jun-Yeon;Han, Gyeong-Ho
    • Journal of Ginseng Research
    • /
    • v.32 no.3
    • /
    • pp.270-274
    • /
    • 2008
  • A bacterium isolated from contaminated white ginseng was identified using API kit and electron microscope. This isolate was determined as rod shaped bacterium having about 1.0 ${\mu}m$ in diameter and 2.0 to 6.0 ${\mu}m$ in length. It had motility by peritrichous flagellum. The isolate had ${\beta}-galactosidase$, arginine dihydrolase and ornithin decarboxylase. It did not have ability not only to use citrate as sole carbon source and but also to produce $H_2S$. However, it could ferment glucose, manitol, sorbitol, rhamnose, arabinose and amygdalin. From these obserbations, the isolate was identified as Citrobacter sp. Ginseng saponin was added to culture of Citrobacter sp. in order to investigate saponin's influence on its growth. The strain was incubated at $38^{\circ}C$ for 3 days after addition of 0.05, 0.5, 2.0 and 4.0% (w/v) of saponin, respectively and the growth rates was investigated. The relative bacterial growth inhibition rates showed 28.6, 66.7, 92.4 and 97.7%, respectively, when compared with saponin non-treated group. These results suggest that the growth of Citrobacter sp. is inhibited by saponin in a concentration-dependent manner.

Isolation and Characterization of Citrobacter sp. Mutants Defective in Decolorization of Crystal Violet (Crystal vilet 색소분해능이 소실된 Citrobacter sp. 의 분리 및 특성)

  • Kim, Ji-Yoon;Kim, Kyung-Woon;Park, Yong-Lark;Cho, Young-Su;Lee, Young-Choon
    • Journal of Life Science
    • /
    • v.10 no.4
    • /
    • pp.333-339
    • /
    • 2000
  • To identify genes involved in the decolorization of crystal violet, we isolated random mutants generated by transponson insertion in crystal violet-declorizing bacterium, Citrobacter sp. The resulting mutant bank yielded mutants with six distinct phenotypes, and Southern hybridization with a Tn5 fragment as a probe showed a single hybridized with six distinct phenotypes, and Southern hybridization with a Tn5 fragment as a probe showed a single hybridized band in the mutants Ctg 2, 5 an 6, whereas two and three bands were detected in Ctg1, 4 and 3, respectively. Tn5-inserted genes were isolated and the DNA sequence flanking Tn5 was determined. From comparison with a sequence database, putative protein product encoded by ctg 5 was identified as E. coli maltose transproter(Mal G) homolog, whereas the deduced amino acid sequence of the other ctg genes did not show any significant similarity with any DNA or protein sequency. Therefore, these results indicate that the other ctg genes except ctg 5 encode new proteins responsible for decolorization of crystal violet.

  • PDF

Identification of Genes Involved in Decolorization of Crystal Violet and Malachite Green in Citrobacter sp. (Citrobacter sp.에서 crystal violet와 malachite green 색소분해에 관여하는 유전자들의 동정)

  • Lee, Young-Mi;Jang, Moon-Sun;Kim, Seok-Jo;Park, Yong-Lark;Cho, Young-Su;Lee, Young-Choon
    • Journal of Life Science
    • /
    • v.14 no.1
    • /
    • pp.21-25
    • /
    • 2004
  • To identify genes involved in the decolorization of both crystal violet and malachite green, we isolated random mutants generated by transposon insertion in triphenylmethane-decolorizing bacterium, Citrobacter sp. The resulting mutant bank yielded 14 mutants with complete defect in color removal capability of both crystal violet and malachite green. Southern hybridization with a Tn5 fragment as a probe showed a single hybridized band in 5 mutants and these mutants appeared to have insertions at different sites of the chromosome. Tn5-inserted genes were isolated and the DNA sequence flanking Tn5 was determined. From comparison with a sequence database, putative protein products encoded by cmg genes were identified as follows. cmg 2 is MaIC protein in maltose transport system; cmg 6 is transcriptional regulator (LysR-type): cmg 12 is a putative oxidoreductase. The sequences deduced from two cmg genes, cmg 8 and cmg 11, showed no significant similarity to any protein with a known function. Therefore, these results indicate that these two cmg genes encode unidentified proteins responsible for decolorization of both crystal violet and malachite green.

Characteristics of Dissimilatory Arsenate-reducing Bacteria (이화형비산염환원균의 특성)

  • Chang, Young-Cheol;Takamizawa, Kazuhiro;Cho, Hoon;Kikuchi, Shintaro
    • KSBB Journal
    • /
    • v.27 no.2
    • /
    • pp.75-85
    • /
    • 2012
  • Although, microbial arsenic mobilization by dissimilatory arsenate-reducing bacteria (DARB) and the practical use to the removal technology of arsenic from contaminated soil are expected, most previous research mainly has been focused on the geochemical circulation of arsenic. Therefore, in this review we summarized the previously reported DARB to grasp the characteristic for bioremediation of arsenic. Evidence of microbial growth on arsenate is presented based on isolate analyses, after which a summary of the physiology of the following arsenate-respiring bacteria is provided: Chrysiogenes arsenatis strain BAL-$1^T$, Sulfurospirillum barnesii, Desulfotomaculum strain Ben-RB, Desulfotomaculum auripigmentum strains OREX-4, GFAJ-1, Bacillus sp., Desulfitobacterium hafniense DCB-$2^T$, strain SES-3, Citrobacter sp. (TSA-1 and NC-1), Sulfurospirillum arsenophilum sp. nov., Shewanella sp., Chrysiogenes arsenatis BAL-$1^T$, Deferribacter desulfuricans. Among the DARB, Citrobacter sp. NC-1 is superior to other dissimilatory arsenate-reducing bacteria with respect to arsenate reduction, particularly at high concentrations as high as 60 mM. A gram-negative anaerobic bacterium, Citrobacter sp. NC-1, which was isolated from arsenic contaminated soil, can grow on glucose as an electron donor and arsenate as an electron acceptor. Strain NC-1 rapidly reduced arsenate at 5 mM to arsenite with concomitant cell growth, indicating that arsenate can act as the terminal electron acceptor for anaerobic respiration (dissimilatory arsenate reduction). To characterize the reductase systems in strain NC-1, arsenate and nitrate reduction activities were investigated with washed-cell suspensions and crude cell extracts from cells grown on arsenate or nitrate. These reductase activities were induced individually by the two electron acceptors. Tungstate, which is a typical inhibitory antagonist of molybdenum containing dissimilatory reductases, strongly inhibited the reduction of arsenate and nitrate in anaerobic growth cultures. These results suggest that strain NC-1 catalyzes the reduction of arsenate and nitrate by distinct terminal reductases containing a molybdenum cofactor. This may be advantageous during bioremediation processes where both contaminants are present. Moreover, a brief explanation of arsenic extraction from a model soil artificially contaminated with As (V) using a novel DARB (Citrobacter sp. NC-1) is given in this article. We conclude with a discussion of the importance of microbial arsenate reduction in the environment. The successful application and use of DARB should facilitate the effective bioremediation of arsenic contaminated sites.

Distribution of Antibiotic Resistant Microbes in Aquaculture Effluent and Disinfection by Electron Beam Irradiation (양식장 배출수중의 항생제 내성균 분포 및 전자빔 살균처리)

  • Jang, Eun-Hee;Lim, Seung-Joo;Kim, Tak-Hyun
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.33 no.7
    • /
    • pp.492-500
    • /
    • 2011
  • Antibiotic resistant microbes were isolated in catfish, trout, eel and loach aquaculture effluent. The distribution of antibiotic resistant microbes in aquaculture effluent and the disinfection efficiency of antibiotic resistant microbes by electron beam irradiation were investigated. It was shown that the multi-drug resistant bacteria were Aeromonas sp., Citrobacter sp., Bacillus sp., Marinobacter sp., Pantoea sp., Pseudomonas sp. and Enterobacter sp. in aquaculture effluent. 41.7% of total strains showed the resistance against one antibiotic agent, and 58.3% of total strains showed the resistance against more than two antibiotics. It was evidently shown that the toxicity and physicochemical properties of antibiotics can be estimated using Quantitative Structure Analysis Relationship (QSAR). Electron beam irradiation was very effective for the disinfection of antibiotic resistant bacteria from aquaculture effluent, in which the disinfection efficiency was approximately 99.9% with electron beam of 1 kGy.

Isolation and Characterization of Benzene-degrading Bacteria. (Benzene 분해 세균의 분리와 특성연구)

  • 김정현;유재근;이형환
    • Microbiology and Biotechnology Letters
    • /
    • v.16 no.5
    • /
    • pp.379-383
    • /
    • 1988
  • To evaluate the treatability of activated sludge induced by benzene with microorganisms, isolation and characterization of benzene-degrading microorganisms were carried out. Six bacterial isolates from the activated sludge were identified ; Pseudomonas fluorescens, Enterobacter agglomerans, Enterobacter cloacae, Klebsiella oxytoca, Citrobacter freundii and Klebsiella pneumoniae. P. fluorescens degraded 55% of benzene contained in the medium as a sole carbon source, E. cloacae 24%, E. agglomerans 41%, and K. oxytoca 32%. Optimal temperature, pH and benzene concentration for growth of P. fluorescens appeared to be 31$^{\circ}C$, pH 7.0, and 300mg benzene per liter. When the P. fluorescens was dominant in the activated sludge induced by benzene, the indicator protozoa was Aspidisca sp. When concentration of benzene was about 387mg per liter, the growths of Aspidisca sp. and Litonotus sp. were high. Protozoa, Litonotus sp. and Vorticella sp. did not grow over 1600mg of benzene per liter.

  • PDF

Effect of environmental and nutritional conditions on $H_2$ production from glucose by the chemoheterotropic facultative bacterium, Citrobacter sp. Y19

  • Oh, You-Kwan;Seol, Eun-Hee;Lee, Young-Kyun;Park, Sung-Hoon
    • 한국생물공학회:학술대회논문집
    • /
    • 2001.11a
    • /
    • pp.598-601
    • /
    • 2001
  • Citrobacter sp. Y19 was studied for $H_2$ production from glucose in batch culture. Important conditions studied include phosphate concentration, temperature, glucose concentration, and gas-phase replacement. Optimal $H_2$ production was observed at 140 - 180 mM of phosphate and $36^{\circ}C$. When glucose concentration increased from 0.1 to 5% (w/v), $H_2$ production increased up to 2% and remained constant thereafter. Intermittent purging of the reaction bottle with Ar gas stimulated the $H_2$ production by alleviating the inhibition by $H_2$. The maximum productivity was observed to be 113.2 ml $H_2$/h-1.

  • PDF